1
|
Kumar A, Krishnaswamy S, Chand DK. Orientational Compatibility Modulation of Ligands in Low-Symmetry Multi-Cavity Discrete Coordination Cages by Neighbouring Cage Participation. Angew Chem Int Ed Engl 2024:e202416332. [PMID: 39425482 DOI: 10.1002/anie.202416332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Complexation of Pd(II) with a designer unsymmetrical bis-monodentate ligand (2 : 4 ratio) yielded a specific Pd2L4 type "single-cavity discrete coordination cage" (SCDCC), from a pool of 4 isomeric structures. The observed selctivity is attributed to inherent orientational preference of the ligand strands around the metal centers. Crafting a short coordinating arm at either ends of the bis-monodentate ligand (i.e the longer-arm) produced a pair of unsymmetrical isomeric tris-monodentate ligands; whereas crafting the same short-arm at both ends of the ligand gives an unsymmetrical tetrakis-monodentate ligand. Complexation of Pd(II) with either of the isomeric tris-monodenate ligands (3 : 4 ratio) resulted in corresponding low-symmetry "multi-cavity discrete coordination cage" MCDCC having two conjoined cavities, though the inherent relative orientational preference of the longer arms is not achievable in these cages. The enforced orientation is sustained by "Neighbouring Cage Participation" (NCP). However, one-pot combination of Pd(II), with a mixture of isomeric tris-monodentate ligands in 3 : 2 : 2 ratio produced an integratively self-sorted mixed-ligated MCDCC from a pool of 31 structures. Also, mixing Pd(II) with the tetrakis-monodentate ligand produced a MCDCC having three conjoined cavities. The inherent orientational preference of longer-arm of the ligand strands is retained in the mixed-ligated double-cavity and the homo-ligated triple cavity cages.
Collapse
Affiliation(s)
- Ashish Kumar
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
2
|
Séjourné S, Labrunie A, Dalinot C, Canevet D, Guechaichia R, Bou Zeid J, Benchohra A, Cauchy T, Brosseau A, Allain M, Chamignon C, Viger-Gravel J, Pintacuda G, Carré V, Aubriet F, Vanthuyne N, Sallé M, Goeb S. Chiral Truxene-Based Self-Assembled Cages: Triple Interlocking and Supramolecular Chirogenesis. Angew Chem Int Ed Engl 2024; 63:e202400961. [PMID: 38284742 DOI: 10.1002/anie.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Incorporating chiral elements in host-guest systems currently attracts much attention because of the major impact such structures may have in a wide range of applications, from pharmaceuticals to materials science and beyond. Moreover, the development of multi-responsive and -functional systems is highly desirable since they offer numerous benefits. In this context, we describe herein the construction of a metal-driven self-assembled cage that associates a chiral truxene-based ligand and a bis-ruthenium complex. The maximum separation between both facing chiral units in the assembly is fixed by the intermetallic distance within the lateral bis-ruthenium complex (8.4 Å). The resulting chiral cavity was shown to encapsulate polyaromatic guest molecules, but also to afford a chiral triply interlocked [2]catenane structure. The formation of the latter occurs at high concentration, while its disassembly could be achieved by the addition of a planar achiral molecule. Interestingly the planar achiral molecule exhibits induced circular dichroism signature when trapped within the chiral cavity, thus demonstrating the ability of the cage to induce supramolecular chirogenesis.
Collapse
Affiliation(s)
- Simon Séjourné
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | - David Canevet
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | | | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Cécile Chamignon
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Jasmine Viger-Gravel
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Vincent Carré
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France
| | | | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, FSCM, Chiropole, F-13397, Marseille, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| |
Collapse
|
3
|
Lorenzetto T, Bordignon F, Munarin L, Mancin F, Fabris F, Scarso A. Substrate Selectivity Imparted by Self-Assembled Molecular Containers and Catalysts. Chemistry 2024; 30:e202301811. [PMID: 37466005 DOI: 10.1002/chem.202301811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Recent trends in catalysis are devoted to mimicking some peculiar features of enzymes like site selectivity, through functional group recognition, and substrate selectivity, through recognition of the entire surface of the substrate. The latter is a specific feature of enzymes that is seldomly present in homogeneous catalysis. Supramolecular catalysis, thanks to the self-assembly of simple subunits, enables the creation of cavities and surfaces whose confinement effects drive the preferential binding of a substrate among others with consequent substrate selectivity. The topic is an emerging field that exploits recognition phenomena to discriminate the reagents based on their size and shape. This review deals this cutting-edge field of research covering examples of supramolecular self-assembled molecular containers and catalysts operating in organic as well as aqueous media, with special emphasis for catalytic systems dealing with direct competitive experiments involving two or more substrates.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Francesca Bordignon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Luca Munarin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| |
Collapse
|
4
|
Su H, Xu Y, Yu H, Han N, Zeng Y, Hao XQ, Shi J, Wang M. Construction of 1,3,5-Triazine-Based Prisms and Their Enhanced Solid-State Emissions. Inorg Chem 2023; 62:7795-7802. [PMID: 37163494 DOI: 10.1021/acs.inorgchem.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study, two trigonal prisms based on the 1,3,5-triazine motif (SA and SB), distinguished by hydrophobic groups, were prepared by the self-assembly of tritopic terpyridine ligands and Zn(II) ions. SA and SB exhibited high luminescence efficiencies in the solid state, overcoming the fluorescence quenching of the 1,3,5-triazine group caused by π-π interactions. Notably, SA and SB exhibited different luminescence behaviors in the solution state and aggregation state. SB with 12 alkyl chains exhibited extremely weak fluorescence in a dilute solution, but its fluorescence intensity and photoluminescence quantum yield (PLQY) were significantly enhanced in the aggregated state (with the increase in the water fraction), especially in the solid state. Different from the gradually enhanced efficiency of SB, the PLQY of SA gradually decreased with the increase in aggregation but still maintained a high luminescence efficiency. These two complexes exhibited different modes to solve the fluorescence quenching of 1,3,5-triazine in the solid state. The hierarchical self-assembly of SB exhibited nanorods owing to the hydrophobic interactions of alky chains, while SA aggregated into spheres under the influence of π-π interactions.
Collapse
Affiliation(s)
- Haoyue Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yunting Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xin-Qi Hao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
5
|
Ge YY, Zhou XC, Zheng J, Luo J, Lai YL, Su J, Zhang HJ, Zhou XP, Li D. Self-Assembly of Two Tubular Metalloligand-Based Palladium-Organic Cages as Hosts for Polycyclic Aromatic Hydrocarbons. Inorg Chem 2023; 62:4048-4053. [PMID: 36847302 DOI: 10.1021/acs.inorgchem.2c04505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein we report two tubular metal-organic cages (MOCs), synthesized by the self-assembly of bidentate metalloligands with different lengths and PdII. These two MOCs feature Pd4L8-type square tubular and Pd3L6-type triangular cage structures, respectively. Both MOCs have been fully characterized by NMR spectroscopy, mass spectrometry, and theoretical calculation. Both cages can be employed for encapsulating polycyclic aromatic hydrocarbons and show high binding affinity toward coronene.
Collapse
Affiliation(s)
- Ying-Ying Ge
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xian-Chao Zhou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ji Zheng
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jie Luo
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ya-Liang Lai
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Juan Su
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Hao-Jie Zhang
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Ping Zhou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
6
|
Sharma S, Sarkar M, Chand DK. Conjoined and non-conjoined coordination cages with palladium(II) vertices: structural diversity, solution dynamics, and intermolecular interactions. Chem Commun (Camb) 2023; 59:535-554. [PMID: 36546562 DOI: 10.1039/d2cc04828k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembled coordination complexes prepared from a combination of Pd(II) components with one or more types of high-symmetry or low-symmetry bis/tris/tetrakis-monodentate ligands are considered in this review. The structures of these complexes are viewed in terms of the presence of a metallo-macromonocycle or conjoined metallo-macromonocycles/metallocages in the frameworks. Analysis of the typical molecular structures revealed an open truth that one or more units of metallo-macromonocycles can be conjoined to afford planar or non-planar systems. In the same line, the enveloping surface of a 3D cage can be considered as a multiple number of conjoined metallomacrocycles that embrace a 3D space from all directions. However, two or more units of cages are conjoined in a multi-3D-cavity cage system and such a system is considered as a conjoined cage. Construction of such conjoined cages having a finite but multiple number of 3D-cavities unified in a single molecular architecture is a challenging task when compared to that of single-3D-cavity based compounds. Conjoining of as many as four units of 3D cages is known so far. Single- as well as multi-cavity cages of lower symmetry have become a very recent trend in this regard where low-symmetry ligands or mixed ligand ensembles are crafted in the framework of the cages. Other structural diversities like helicity in cages, and supramolecular isomerism are also included in this assorted literature work. Although isomerism in classical coordination complexes is well known, it is very less studied in self-assembled coordination complexes. Ligand isomerism is one such feature that is reviewed here. The dynamic behavior of the cages results in interesting reactivity aspects. A large variety of dynamic processes are collected under an umbrella, i.e., "ligand exchange reactions" and described with examples. Intermolecular interaction among the already self-assembled molecules is possible in solution, solid, and gel-phases as discussed in the last part of this review. The understanding of intermolecular interaction is likely to influence different areas of research including crystal engineering, and materials chemistry.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Moumita Sarkar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
7
|
Min H, Craze AR, Wallis MJ, Tokunaga R, Taira T, Hirai Y, Bhadbhade MM, Fanna DJ, Marjo CE, Hayami S, Lindoy LF, Li F. Spin Crossover Induced by Changing the Identity of the Secondary Metal Ion from Pd II to Ni II in a Face-Centered Fe II 8 M II 6 Cubic Cage. Chemistry 2022; 29:e202203742. [PMID: 36550089 DOI: 10.1002/chem.202203742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Discrete spin crossover (SCO) heteronuclear cages are a rare class of materials which have potential use in next-generation molecular transport and catalysis. Previous investigations of cubic cage [Fe8 Pd6 L8 ]28+ constructed using semi-rigid metalloligands, found that FeII centers of the cage did not undergo spin transition. In this work, substitution of the secondary metal center at the face of the cage resulted in SCO behavior, evidenced by magnetic susceptibility, Mössbauer spectroscopy and single crystal X-ray diffraction. Structural comparisons of these two cages shed light on the possible interplay of inter- and intramolecular interactions associated with SCO in the NiII analogue, 1 ([Fe8 Ni6 L8 (CH3 CN)12 ]28+ ). The distorted octahedral coordination environment, as well as the occupation of the CH3 CN in the NiII axial positions of 1, prevented close packing of cages observed in the PdII analogue. This led to offset, distant packing arrangements whereby important areas within the cage underwent dramatic structural changes with the exhibition of SCO.
Collapse
Affiliation(s)
- Hyunsung Min
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alexander R Craze
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3Ta, UK
| | - Matthew J Wallis
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ryuya Tokunaga
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Takahiro Taira
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yutaka Hirai
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Mohan M Bhadbhade
- Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Daniel J Fanna
- Advanced Materials Characterisation Facility, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry F11, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Feng Li
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
8
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
9
|
Makita Y, Akagi Y, Aoyagi Y, Yakabe G, Hirai Y, Nomoto A, Fujiwara SI, Ogawa A. Direct synthesis and characterization of endohedral zinc(II) hemicryptophane complex. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Abstract
Coordination driven self-assembly of achiral components, i.e., hexa-alkylated truxene ligands (L) with bis-metallic complexes (M2), afforded three chiral face-rotating stereoisomer polyhedra (M6L2). By tuning the length of the alkyl chains as well as the distance between both ligands facing each other in the self-assemblies (M6L2), one can control the diastereomeric distribution between the expected homo- and hetero-chiral structures.
Collapse
|
11
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
12
|
Nguyen T, Tran NM, Park IH, Yoo H. Heteroleptic Triple-Stranded Metallosupramolecules with Hydrophobic Inner Voids. ACS OMEGA 2022; 7:13067-13074. [PMID: 35474782 PMCID: PMC9026104 DOI: 10.1021/acsomega.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The systematic combination of well-defined coordination spheres and multiple types of ligands (heteroleptic) can lead to the generation of hierarchical metallosupramolecules with a high level of complexity and functionality. In particular, a specific multilevel coordination-driven assembly through the initiate generation of multinuclear clusters can form unique heteroleptic multiple-stranded supramolecular complexes. Herein, we report novel triple-stranded nickel-based supramolecules constructed from two different ditopic ligands ([1,1':3',1''-terphenyl]-4,4''-dicarboxylate (TP) and 2,6-pyridinedicarboxylate (PDA)) and a nickel precursor. The solid-state structures of the as-synthesized supramolecules revealed that three PDA ligands are employed to fabricate a tetranuclear ({Ni4}) cluster, and two {Ni4} clusters are assembled to form the final triple-stranded metallosupramolecules by three TP ligands. The bridging TP ligands also provide large inner voids with highly hydrophobic environments. Structural investigation of the generated complexes provided a deeper understanding of the aspects driving the formation of heteroleptic supramolecules, which is crucial for the design of multiple-strands with desired morphologies and functionalities.
Collapse
Affiliation(s)
- Thanh
Nhan Nguyen
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ngoc Minh Tran
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - In-Hyeok Park
- Graduate
School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyojong Yoo
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
13
|
Zhou XC, Wu LX, Wang XZ, Lai YL, Ge YY, Su J, Zhou XP, Li D. Self-Assembly of a Pd 4Cu 8L 8 Cage for Epoxidation of Styrene and Its Derivatives. Inorg Chem 2022; 61:5196-5200. [PMID: 35324197 DOI: 10.1021/acs.inorgchem.2c00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein we report a discrete heterometallic Pd4Cu8L8 cage with a tubular structure, which was synthesized by the assembly of copper metalloligands and PdII ions in a stepwise manner. The Pd4Cu8L8 cage has been unequivocally characterized by single-crystal X-ray diffraction, electrospray ionization-mass spectroscopy, and energy dispersive spectroscopy. The cage showed excellent catalytic activity in the epoxidation of styrene and its derivatives under conditions without using additional solvent, providing potential material for catalyzing the oxidation reactions.
Collapse
Affiliation(s)
- Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Le-Xiong Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ya-Liang Lai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying-Ying Ge
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Juan Su
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
14
|
Pachisia S, Gupta R, Gupta R. Molecular Assemblies Offering Hydrogen-Bonding Cavities: Influence of Macrocyclic Cavity and Hydrogen Bonding on Dye Adsorption. Inorg Chem 2022; 61:3616-3630. [PMID: 35156802 DOI: 10.1021/acs.inorgchem.1c03747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work presents a set of Hg macrocycles of amide-phosphine-based ligands offering H-bonding cavities of different dimensions. Such macrocycles are shown to selectively adsorb anionic dyes followed by neutral dyes as well as Prontosil, a biologically relevant antibiotic, within their cavities with the aid of H-bonding-assisted encapsulation. Kinetic experiments supported by spectroscopic and docking studies illustrate the importance of the cavity structure as well as H-bonds for the selective adsorption of dyes.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ruchika Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
15
|
Dey N, Haynes CJE. Supramolecular Coordination Complexes as Optical Biosensors. Chempluschem 2021; 86:418-433. [PMID: 33665986 DOI: 10.1002/cplu.202100004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/15/2021] [Indexed: 12/11/2022]
Abstract
In recent years, luminescent supramolecular coordination complexes (SCCs), including 2D-metallacycles and 3D-metallacages have been utilised for biomolecular analysis. Unlike small-molecular probes, the dimensions, size, shape, and flexibility of these complexes can easily be tuned by combining ligands designed with particular geometries, symmetries and denticity with metal ions with strong geometrical binding preferences. The well-defined cavities that result, in combination with the other non-covalent interactions that can be programmed into the ligand design, facilitate great selectivity towards guest binding. In this Review we will discuss the application of luminescent metallacycles and cages in the binding and detection of a wide range of biomolecules, such as carbohydrates, proteins, amino acids, and biogenic amines. We aim to explore the effect of the structural diversity of SCCs on the extent of biomolecular sensing, expressed in terms of sensitivity, selectivity and detection range.
Collapse
Affiliation(s)
- Nilanjan Dey
- Graduate School of Science, Kyoto University, Japan
| | | |
Collapse
|