1
|
Liu WD, Gao J, Mo JN, Zhou Y, Zhao J. Cooperative NHC and Photoredox Catalyzed Radical Aminoacylation of Alkenes to Tetrahydropyridazines. Chemistry 2024; 30:e202402288. [PMID: 39072808 DOI: 10.1002/chem.202402288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Tetrahydropyridazines constitute an important structural motif found in numerous natural products and pharmaceutical compounds. Herein, we report an aminoacylation reaction of alkenes that enables the synthesis of 1,4,5,6-tetrahydropyridazines through cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. This approach involves the 6-endo-trig cyclization of N-centered hydrazonyl radicals, generated via single-electron oxidation of hydrazones, followed by a radical-radical coupling step. The mild process tolerates a wide range of common functional groups and affords a variety of tetrahydropyridazines in moderate to high yields. Preliminary investigations using chiral NHC catalysts demonstrate the potential of this protocol for asymmetric radical reactions.
Collapse
Affiliation(s)
- Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
2
|
He YW, Huang L, Huang K, Yan CG, Sun J, Han Y. Construction of Diverse Fused Chromene Frameworks via Isocyanide-Based Three-Component Reaction. J Org Chem 2024; 89:10854-10866. [PMID: 38993063 DOI: 10.1021/acs.joc.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A convenient synthetic protocol for diverse fused chromenes was successfully developed by a three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and various cyclic 1,3-dipolarophiles containing o-hydroxyphenyl group. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 3-(o-hydroxyarylidene)indolin-2-ones in tetrahydrofuran at 60 °C resulted in unique functionalized spiro[cyclobuta[c]chromene-1,3'-indolines] in good yields and with high diastereoselectivity. However, the similar three-component reaction with 2-(5-halo-2-hydroxyarylidene)indolin-2-ones afforded unexpected chain products in satisfactory yields. In addition, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 2-(o-hydroxyarylidene)-1,3-indanediones in tetrahydrofuran at 60 °C resulted in complex indeno[2',1':5,6]pyrano[3,4-c]chromene derivatives in high yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Wei He
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Li Huang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Kun Huang
- Jiangsu Lianhuan Pharmaceutical Co., Ltd., Yangzhou 225000, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | | | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
3
|
Chen XY, Han Y, Sun J, Yan CG. Rapid construction of tricyclic tetrahydrocyclopenta[4,5]pyrrolo[2,3- b]pyridine via isocyanide-based multicomponent reaction. Beilstein J Org Chem 2024; 20:1436-1443. [PMID: 38952962 PMCID: PMC11216090 DOI: 10.3762/bjoc.20.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
An efficient protocol for the synthesis of polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates was developed by a three-component reaction. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates and 5,6-unsubstituted 1,4-dihydropyridines in refluxing acetonitrile afforded polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates in high yields and with high diastereoselectivity. The reaction was finished by in situ generation of activated 5-(alkylimino)cyclopenta-1,3-dienes from addition of alkyl isocyanide to two molecules of but-2-ynedioates and sequential formal [3 + 2] cycloaddition reaction with 5,6-unsubstituted 1,4-dihydropyridine.
Collapse
Affiliation(s)
- Xiu-Yu Chen
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| |
Collapse
|
4
|
Kakavand N, Bayat M, Bayat Y. Catalyst-free synthesis of acenaphthoindolopyrimidine derivatives. Mol Divers 2023; 27:1785-1793. [PMID: 36125607 DOI: 10.1007/s11030-022-10531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
A one pot three component reaction of acenaphthoquinone, barbituric acid/thiobarbituric acid/N,N-dimethyl barbituric acid and arylamines in ethanol for the synthesis of acenaphthoindolopyrimidine derivatives is reported. The reactions take place without a catalyst and gentle conditions. This method is facile and has some benefits such as, readily available starting materials, green solvent, catalyst-free, no column chromatographic purification and good to high yields.
Collapse
Affiliation(s)
- Nahale Kakavand
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Yadollah Bayat
- Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Zhang L, Gao EQ. Catalytic C(sp)-H carboxylation with CO2. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Borah B, Swain S, Patat M, Chowhan LR. Recent advances and prospects in the organocatalytic synthesis of quinazolinones. Front Chem 2022; 10:991026. [PMID: 36186594 PMCID: PMC9515322 DOI: 10.3389/fchem.2022.991026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Quinazolinone, a bicyclic compound, comprises a pyrimidine ring fused at 4´ and 8´ positions with a benzene ring and constitutes a substantial class of nitrogen-containing heterocyclic compounds on account of their frequent existence in the key fragments of many natural alkaloids and pharmaceutically active components. Consequently, tremendous efforts have been subjected to the elegant construction of these compounds and have recently received immense interest in synthetic and medicinal chemistry. The domain of synthetic organic chemistry has grown significantly over the past few decades for the construction of highly functionalized therapeutically potential complex molecular structures with the aid of small organic molecules by replacing transition-metal catalysis. The rapid access to this heterocycle by means of organocatalytic strategy has provided new alternatives from the viewpoint of synthetic and green chemistry. In this review article, we have demonstrated a clear presentation of the recent organocatalytic synthesis of quinazolinones of potential therapeutic interests and covered the literature from 2015 to date. In addition to these, a clear presentation and understanding of the mechanistic aspects, features, and limitations of the developed reaction methodologies have been highlighted.
Collapse
|
7
|
Zhu Y, Dai R, Huang C, Zhou W, Zhang X, Yang K, Wen H, Li W, Liu J. Synthesis of Isoquinolone, 1,2-Benzothiazine, and Naphtho[1',2':4,5]imidazo[1,2- a]pyridine Derivatives via Rhodium(III)-Catalyzed (4 + 2) Annulation. J Org Chem 2022; 87:11722-11734. [PMID: 35968716 DOI: 10.1021/acs.joc.2c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we report a novel and efficient synthetic method to construct isoquinolone scaffold via the Rh(III)-catalyzed (4 + 2) annulation of benzamide with an unreported coupling reagent methyl 2-chloroacrylate. Accordingly, other valuable 1,2-benzothiazine and naphtho[1',2':4,5]imidazo[1,2-a]pyridine derivatives are also obtained through a similar synthetic protocol. Thus, our developed method is highlighted by high yield and reaction versatility.
Collapse
Affiliation(s)
- Yueyue Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rupeng Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wang Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyuan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
|
9
|
Govindan K, Jayaram A, Duraisamy T, Chen NQ, Lin WY. Metal-Free N-H/C-H Carbonylation by Phenyl Isocyanate: Divergent Synthesis of Six-Membered N-Heterocycles. J Org Chem 2022; 87:8719-8729. [PMID: 35723982 DOI: 10.1021/acs.joc.2c01026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We disclose a method using phenyl isocyanate to synthesize carbonyl-containing N-heterocycles. The metal-free novel approach for both N-H and C-H carbonylation processes was successfully refined, delivering a range of synthetically valuable derivatives of quinazoline-2,4(1H,3H)-dione, 2H-benzo[e] [1,2,4] thiadiazin-3(4H)-one 1,1-dioxide, and pyrrolo[1,2-a] quinoxalin-4(5H)-one. The protocol features broad substrates with diverse reactions suitable for excellent yields, mild conditions, and good functional group compatibility. Moreover, the applicability of the reaction was characterized by gram-scale synthesis and synthetic transformations for drug molecules.
Collapse
Affiliation(s)
- Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Tamilselvan Duraisamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
10
|
Goulart TAC, Recchi AMS, Back DF, Zeni G. Selective 5‐Exo‐Dig versus 6‐Endo‐Dig Cyclization of Benzoimidazole Thiols with Propargyl Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tales A. C. Goulart
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Ana M. S. Recchi
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos Departamento de Química, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Gilson Zeni
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
11
|
Zhang WK, Li JZ, Zhang CC, Zhang J, Zheng YN, Hu Y, Li T, Wei WT. The Synthesis of Polycyclic Quinazolinones via C(sp3)–H Functionalization of Inert Alkanes or Visible‐light Promoted Oxidation Decarboxylation of N‐hydroxyphthalimide (NHP‐esters). European J Org Chem 2022. [DOI: 10.1002/ejoc.202200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Ting Li
- Nanyang Normal University chemistry CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
12
|
Li J, Mei L, Cai X, Zhang C, Cao T, Huang X, Liu Y, Wei W. Transition‐Metal‐Free Radical Cyclization of 2‐Arylbenzoimidazoles with Unactivated Alkanes
via
C(
sp
3
)−H Functionalizations in Aqueous Media. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiao‐Zhe Li
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Lan Mei
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Xue‐Er Cai
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Can‐Can Zhang
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Ting‐Ting Cao
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Xun‐Jie Huang
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Yi‐Lin Liu
- College of Chemistry and Materials Engineering Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material Huaihua University Huaihua Hunan 418008 People's Republic of China
| | - Wen‐Ting Wei
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| |
Collapse
|
13
|
Lu F, Chen Y, Song X, Yu C, Li T, Zhang K, Yao C. NHC-Catalyzed [2 + 4] Annulation of Alkynyl Ester with Chalcone. J Org Chem 2022; 87:6902-6909. [PMID: 35486449 DOI: 10.1021/acs.joc.2c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed [2 + 4] cyclization of alkynyl ester with α,β-unsaturated ketone to form a pyran scaffold was developed successfully. The cheap and easily available starting materials, mild reaction conditions, moderate to excellent yields, and high atom economy make this strategy attractive for the syntheses of highly substituted 4H-pyran derivatives.
Collapse
Affiliation(s)
- Fangfang Lu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yangxu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xue Song
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
14
|
Li D, Cheng F, Tang Y, Li J, Li Y, Jiao J, Xu S. DABCO-Catalyzed [4 + 2] Annulation of 5-Methylenehex-2-ynedioates with Electron-Deficient Alkenes. J Org Chem 2022; 87:6362-6370. [DOI: 10.1021/acs.joc.1c03159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongqiu Li
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fang Cheng
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jing Li
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yang Li
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Silong Xu
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
15
|
Banik A, Mandal SK. Tuning Redox States of Phenalenyl-Based Molecules by Consecutive Reduction toward Transition Metal-Free Heck-Type C–C Cross-Coupling. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ananya Banik
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Swadhin K. Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
16
|
Wahan SK, Sharma S, Chawla PA. Synthesis of quinazolinone and quinazoline derivatives using green chemistry approach. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Green chemistry has been most compelling area of research. Green chemistry is vital to long-term sustainability, not only because of its fundamental notion of reducing the use and manufacture of hazardous materials, but also because of its broad applicability as one of the most efficient and problem-solving pathways for the synthesis of new materials. Various chemists have studied a plethora of strategies to lessen the release of hazardous chemical waste, waste material recyclization and reuse. New techniques have been created based on a green chemistry strategy that includes the utilization of catalysts, nanosized materials and composites, such as metal and non-metal nanoparticles, their oxides and salts, and different heterocyclic rings. Quinazolines and quinazolinones are biologically significant heterocyclic rings with a wide range of characteristics. In a summary, this chapter focuses on recent novel synthesis methods for quinazoline and quinazolinone derivatives, which are vital to humanity.
Collapse
Affiliation(s)
- Simranpreet K. Wahan
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga , Punjab 142001 , India
| | - Sangeeta Sharma
- Department of Applied Science & Humanities , Shaheed Bhagat Singh State University , Ferozepur , Punjab 152004 , India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga , Punjab 142001 , India
| |
Collapse
|
17
|
Ashitha KT, Krishna A, Basavaraja D, Sasidhar BS. Recent Advances in the Transition Metal-Free Synthesis of Heterocycles from α, β-Unsaturated Ketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are an inevitable part of our life. These important classes of molecules have a wide range of applications starting from life-sustaining drugs to agrochemicals. Numerous methods, including metal...
Collapse
|
18
|
Ahmed EA, Mohamed MFA, Omran OA. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents. RSC Adv 2022; 12:25204-25216. [PMID: 36199335 PMCID: PMC9443684 DOI: 10.1039/d2ra04498f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Novel quinoxaline derivatives (2a–d, 3, 4a, 4b and 5–15) have been synthesized via the reaction of 4-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (1) with different aldehydes, ketones, diketones, ketoesters, as well as hydrazine, phenyl isothiocyanate, carbon disulphide. The synthesized products have been screened for their in vitro anticancer and COX inhibitory activities. Most of the synthesized compounds exhibited good anticancer and COX-2 inhibitory activities. MTT assay revealed that compounds 11 and 13 were the most potent and exhibited very strong anticancer activity against the three cancer cell lines with IC50 values ranging from 0.81 μM to 2.91 μM. Compounds 4a and 5 come next and displayed strong anticancer activity against the three cancer cell lines with IC50 values ranging from 3.21 μM to 4.54 μM. Mechanistically, compounds 4a and 13 were the most active and potently inhibited EGFR with IC50 = 0.3 and 0.4 μM, respectively. Compounds 11 and 5 come next with IC50 = 0.6 and 0.9 μM, respectively. Moreover, compounds 11 and 13 were the most potent as COX-2 inhibitors and displayed higher potency against COX-2 (IC50 = 0.62 and 0.46 μM, respectively) more than COX-1 (IC50 = 37.96 and 30.41 μM, respectively) with selectivity indexes (SI) of 61.23 and 66.11, respectively. Compounds 4a and 5 comes next with IC50 = 1.17 and 0.83 μM and SI of 24.61 and 48.58, respectively. Molecular docking studies into the catalytic binding pocket of both protein receptors, EGFR and COX-2, showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and Veber's standard were calculated and revealed that compounds 4a, 5, 11 and 13 had a reasonable drug-likeness with acceptable physicochemical properties. Therefore, based on the obtained biological results accompanied with the docking study and physicochemical parameters, it could be concluded that compounds 4a, 5, 11 and 13 could be used as promising orally absorbed dual anti-inflammatory agents via inhibition of COX-2 enzyme and anticancer candidates via inhibition of EGFR enzyme and could be used as a future template for further investigations. Novel quinoxaline derivatives (2a–d, 3, 4a, 4b, 5–15) have been synthesized and screened for their in vitro anticancer and COX-2 inhibitory activities. Compounds 4a, 5, 11 and 13 proved to be the most potent anticancer and COX-2 inhibitors.![]()
Collapse
Affiliation(s)
- Eman A. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Omran A. Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
19
|
Lai H, Xu J, Lin J, Su B, Zha D. Chemo-selective control of Ritter-type reaction by coordinatively unsaturated inorganic salt hydrates. Org Chem Front 2022. [DOI: 10.1039/d1qo01832a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used a readily available water source, MgSO4·2H2O, to realize the control of the chemo-selectivity of the Ritter-type reaction efficiently.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
20
|
Yi R, Li J, Wang D, Wei W. Radical Cascade Cyclization Involving C(sp 3)—H Functionalization of Unactivated Cycloalkanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Shukla G, Saha P, Pali P, Raghuvanshi K, Singh MS. Electrochemical Synthesis of 1,2,3-Thiadiazoles from α-Phenylhydrazones. J Org Chem 2021; 86:18004-18016. [PMID: 34818010 DOI: 10.1021/acs.joc.1c02275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed an electrochemical approach for the synthesis of fully substituted 1,2,3-thiadiazoles from α-phenylhydrazones at room temperature, which is very challenging and complementary to the conventional thermal reactions. The key step involves anodic oxidation of phenylhydrazone derivatives at a constant current followed by N,S-heterocyclization. The protocol is remarkable in that it is free of a base and free of an external oxidant and can be converted to a gram scale for postsynthetic drug development with functional thiadiazoles. Most importantly, the electrochemical transformation reflected efficient electro-oxidation with an operationally friendly easy procedure with ample functional molecules. Cyclic voltammograms support the mechanism of this electro-oxidative cyclization process.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priya Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Keshav Raghuvanshi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
23
|
Zhang Y, Zhou Z, Li Z, Hu K, Zha Z, Wang Z. Iodine-mediated electrochemical C(sp 3)-H cyclization: the synthesis of quinazolinone-fused N-heterocycles. Chem Commun (Camb) 2021; 58:411-414. [PMID: 34897313 DOI: 10.1039/d1cc05865g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient iodine-mediated electrochemical C(sp3)-H cyclization was developed under mild conditions. A variety of functionalized quinazolinone-fused N-heterocycles can be obtained with good to excellent yields by virtue of this method. The reaction features a broad substrate scope and scalability, and is metal-free and chemical oxidant-free.
Collapse
Affiliation(s)
- Yan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhenghong Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhibin Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Kangfei Hu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
24
|
Bera A, Bera S, Banerjee D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem Commun (Camb) 2021; 57:13042-13058. [PMID: 34781335 DOI: 10.1039/d1cc04919d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-active molecules having N-heteroarene core are widely used for numerous medicinal applications and as lifesaving drugs. In this direction, dehydrogenation of partially saturated aromatic N-heterocycles shows utmost importance for the synthesis of heterocycles. This feature article highlights the recent advances, from 2009 to April 2021, on the dehydrogenation of N-heteroaromatics. Notable features considering the development of newer catalysis for dehydrogenations are: (i) approaches based on precious metal catalysis, (ii) newer strategies and catalyst development technology using non-precious metal-catalysts for N-heterocycles having one or more heteroatoms, (iii) Synthesis of five or six-membered N-heterocycles using photocatalysis, electrocatalytic, and organo-catalytic approaches using different homogeneous and heterogeneous conditions' (iv) metal free (base and acid-promoted) dehydrogenation along with I2, N-hydroxyphthalimide (NHPI) and bio catalyzed miscellaneous examples have also been discussed, (v) mechanistic studies for various dehydrogenation reactions and (vi) synthetic applications of various bio-active molecules including post-drug derivatization are discussed.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
25
|
Qin F, Wang H, Cao T, Liu Q, Xu Q, Zheng H, Zhu M, Li T, Liu Y, Wei W. Metal‐free Radical Cyclization of Olefinic 1,3‐Dicarbonyls and Olefinic Amides with Nitrile C(sp
3
)−H Bonds in Aqueous Media. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fu‐Hua Qin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hui‐Zhi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Ting‐Ting Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qi‐Li Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical Engineering Liaocheng University Liaocheng, Shandong 252059 P. R. China
| | - Meiling Zhu
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Yi‐Lin Liu
- College of Chemistry and Materials Engineering Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material Huaihua University Huaihua, Hunan 418008 P. R. China
| | - Wen‐Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| |
Collapse
|
26
|
Zhao Y, Guo X, Zhang R, Li S, Chen T, Sun X. CF 3CO 2H-Catalyzed Synthesis of 3-Alkynylpyrrole Derivatives and Their Controlled Reduction. J Org Chem 2021; 86:15568-15576. [PMID: 34648289 DOI: 10.1021/acs.joc.1c02078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A transition-metal-free methodology employing nitroenynes and enaminones has been developed to access 3-alkynylpyrrole derivatives. This mild cyclization reaction might proceed through the nucleophilic addition, intramolecular cyclization, and the subsequent elimination processes. The protocol features a broad substrate scope, good selectivity, and functional group tolerance. Notably, the advantage of this method is also highlighted by the controlled reduction to generate alkenyl- or alkylpyrrole derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuqiang Guo
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ruihua Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Tingting Chen
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuejun Sun
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
27
|
Zhou X, Zhang N, Li Y, Mo Z, Ma X, Chen Y, Xu Y. Metal-free synthesis of 3-sulfonyl-5-selanyl-4a,8a-dihydro-2H-chromen-6(5H)-ones via visible light driven intermolecular cascade cyclization of alkyne-tethered cyclohexadienones and selenosulfonates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Yamamoto Y, Kodama S, Nishimura R, Nomoto A, Ueshima M, Ogawa A. One-Pot Construction of Diverse β-Lactam Scaffolds via the Green Oxidation of Amines and Its Application to the Diastereoselective Synthesis of β-Amino Acids. J Org Chem 2021; 86:11571-11582. [PMID: 34319738 DOI: 10.1021/acs.joc.1c01128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, a simple one-pot construction of β-lactam scaffolds was successfully achieved via 4,6-dihydroxysalicylic acid-catalyzed organocatalytic oxidation of amines to imines using molecular oxygen. Although some imines are highly unstable and difficult to isolate by conventional methods, the organocatalytic oxidation of amines described herein, followed by their direct reaction with acyl chlorides in the presence of a base, afforded a series of new β-lactam derivatives with excellent cis selectivity, which could not be synthesized and isolated by previously reported methods. Thus, this one-pot protocol will be one of the powerful methods applicable to the synthesis of various potential drug candidates and functional molecules. Furthermore, the subsequent hydrolysis of these β-lactams successfully afforded the corresponding β-amino acids as almost single diastereomers in up to 99% yields.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Riku Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Michio Ueshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
29
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
30
|
Chen Z, Nie XD, Sun JT, Yang AM, Wei BG. Zn(OTf) 2-catalyzed hydroamination of ynamides with aromatic amines. Org Biomol Chem 2021; 19:2492-2501. [PMID: 33656504 DOI: 10.1039/d0ob02603d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Zn(OTf)2-catalyzed hydroamination of ynamides 2a-2l with aromatic amines 1a-1r was developed. This protocol features broad substrate scope of aromatic amines, good functional group tolerance for ynamides, and excellent regioselectivities. As a result, a variety of substituted amidine compounds 3aa-3oa, 3ab-3al and 3pa-3rk were prepared in moderate to excellent yields and with high regioselectivities.
Collapse
Affiliation(s)
- Zhuo Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | | | | | | | | |
Collapse
|
31
|
Tian YT, Zhang FG, Ma JA. Regioselective [3 + 2] Cycloaddition Reaction of 3-Alkynoates with Seyferth-Gilbert Reagent. J Org Chem 2021; 86:3574-3582. [PMID: 33507737 DOI: 10.1021/acs.joc.0c02957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A Et3N-triggered regioselective [3 + 2] cycloaddition reaction of 3-alkynoates with Seyferth-Gilbert reagent has been developed to furnish a series of trisubstituted pyrazole-3-phosphonates. A one-pot cycloaddition/alkylation sequence further offered access to the corresponding fully substituted pyrazoles.
Collapse
Affiliation(s)
- Yu-Ting Tian
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
| |
Collapse
|
32
|
Nie XD, Han XL, Sun JT, Si CM, Wei BG, Lin GQ. Nickel-Catalyzed Regioselective Hydroamination of Ynamides with Secondary Amines. J Org Chem 2021; 86:3433-3443. [DOI: 10.1021/acs.joc.0c02807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Di Nie
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xiao-Li Han
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jian-Ting Sun
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Mei Si
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
33
|
Yao W, Wang J, Lou Y, Wu H, Qi X, Yang J, Zhong A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org Chem Front 2021. [DOI: 10.1039/d1qo00705j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first transition-metal-free catalysts for deoxygenative reduction of nitroarenes, nitro heteroarenes and even notoriously challenging nitroalkanes using pinacolborane have been reported.
Collapse
Affiliation(s)
- Wubing Yao
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
- Department of Chemistry
| | - Jiali Wang
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
- Department of Chemistry
| | - Yinpeng Lou
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
| | - Haijian Wu
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
| | - Xinxin Qi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P.R. China
| | - Jianguo Yang
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
- Department of Chemistry
| | - Aiguo Zhong
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
| |
Collapse
|
34
|
Rajai-Daryasarei S, Gohari MH, Mohammadi N. Reactions involving aryl methyl ketone and molecular iodine: a powerful tool in the one-pot synthesis of heterocycles. NEW J CHEM 2021. [DOI: 10.1039/d1nj03572j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preparation of heterocyclic compounds has attracted great attention in organic chemistry because of their extensive application in the field of bioactive molecules, materials science, and natural products.
Collapse
Affiliation(s)
| | | | - Narges Mohammadi
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
35
|
Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q. Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01196g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective multicomponent dearomative multifunctionalization of N-alkyl activated azaarenes with 1,5-diazapentadienium salts has been developed to access structurally rigid and synthetically challenging cage-like and bridged azaheterocycles.
Collapse
Affiliation(s)
- Hongjie Miao
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Xuguan Bai
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Junhui Yu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| |
Collapse
|
36
|
Ma W, Han Y, Sun J, Yan C. Three-Component Reaction for Efficient Synthesis of Functionalized Spiro[cyclopentane-1,3'-indolines]. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|