1
|
Ji CB. Advances and Strategies towards Synthesis of Aspidosperma Indole Alkaloids Goniomitine. Chem Biodivers 2024; 21:e202400416. [PMID: 38587971 DOI: 10.1002/cbdv.202400416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Goniomitine is of the aspidosperma alkaloid family, with an angularly fused tetracyclic skeleton housing an all-carbon quaternary carbon chiral center alongside an aminal functional group. This natural product has garnered attention as a synthetic target due to its intriguing molecular architecture and anti-proliferative activity in recent years. Following the first synthesis of (-)-goniomitine by Takano in 1991, synthetic chemists have developed various methods. This review provides an overview of the methodologies used in the synthesis of goniomitine in racemic and enantiopure forms via divergent construction indole framework, indole functionalization, and the integrated oxidation/reduction/cyclization (iORC) sequence from 1991 to 2023.
Collapse
Affiliation(s)
- Cong-Bin Ji
- School of Chemistry and Environmental Sciences, Shangrao Normal University, 334001, Shangrao, P. R. China
| |
Collapse
|
2
|
Adris D, Taskesenligil Y, Akyildiz V, Essiz S, Saracoglu N. Solvent-Mediated Tunable Regiodivergent C6- and N1-Alkylations of 2,3-Disubstituted Indoles with p-Quinone Methides. J Org Chem 2023; 88:3132-3147. [PMID: 36779866 PMCID: PMC9990074 DOI: 10.1021/acs.joc.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Indium-catalyzed, solvent-enabled regioselective C6- or N1-alkylations of 2,3-disubstituted indoles with para-quinone methides are developed under mild conditions. Notably, highly selective and switchable alkylations were selectively achieved by adjusting the reaction conditions. Moreover, scalability and further transformations of the alkylation products are demonstrated, and this operationally simple methodology is amenable to the late-stage C6-functionalization of the indomethacin drug. The reaction pathways were explained with the support of experimental and density functional theory studies.
Collapse
Affiliation(s)
- Douaa Adris
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Yunus Taskesenligil
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Volkan Akyildiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Selcuk Essiz
- Department of Medical Services and Techniques, Vocational School of Health Services, Hakkari University, Hakkari 30000, Türkiye
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| |
Collapse
|
3
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
4
|
Li Z, Ma S, Liu F, Ma R, Zhao J, Xie X, She X. Rapid construction of indole-fused 8-10 membered lactones via a tandem reaction. Org Biomol Chem 2022; 20:6314-6318. [PMID: 35852951 DOI: 10.1039/d2ob01110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intramolecular anaerobic Mukaiyama hydration-initiated tandem reduction/condensation/acyl migration/aromatization reaction was developed, which enabled the rapid construction of indole-fused 8-10 membered lactones starting from cyclic 2-allyl-2-(2-nitrophenyl)-1,3-diketones. A nitro substituent in the substrates acted as both an oxygen source in the Mukaiyama hydration step and a nitrogen source in a tandem indole ring construction step. Our reaction features mild conditions, atom economy, and inexpensive reagents and it can be conveniently scaled up to a gram scale in modest yields. A rational reaction mechanism was also proposed based on previous reports and control experiments.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shiqiang Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Fuhai Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ruize Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jipeng Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
5
|
Shinde MH, Ramana CV. Facile synthesis of the spiro-pyridoindolone scaffold via a gold-catalysed intramolecular alkynol cyclisation/hydroindolylation. Org Biomol Chem 2022; 20:2086-2095. [PMID: 35188513 DOI: 10.1039/d1ob02483c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A simple approach for the synthesis of pyridoindolone scaffolds with a spiroannulated tetrahydrofuran ring is described. The overall process comprises intramolecular sequential gold-catalysed 5-endo-dig alkynol cycloisomerization and subsequent addition of indole C2 to the in situ generated oxocarbenium cation.
Collapse
Affiliation(s)
- Mahesh H Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Park SA, Park JU, Kim YL, Kim JH. Transition Metal-Free, Methoxide-Catalyzed Synthesis of Pyridoindolones. J Org Chem 2021; 86:17050-17062. [PMID: 34761671 DOI: 10.1021/acs.joc.1c02176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A simple transition metal-free strategy for the synthesis of pyrido[1,2-a]indolone derivatives has been devised through sodium methoxide-catalyzed intramolecular cyclization of 2-alkenylated N-pyrimidyl indoles. The reactions involved a Smiles rearrangement/cyclization cascade, which resulted in a new series of N-fused indoles, potentially applicable skeletons in medicinal chemistry. This reaction presents simple eco-friendly reaction conditions, a high atom- and cost-economy, a short reaction time, and a broad range of substrate scope with high reaction efficiency.
Collapse
Affiliation(s)
- Sun-A Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ye Lim Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| |
Collapse
|
7
|
Wu G, Li T, Liu F, Zhao Y, Ma S, Tang S, Xie X, She X. Thiourea catalyzed 1,6-conjugate addition of indoles to para-quinone methides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|