1
|
Geng W, Wang H, Xi J, Jiang R, Guo J, Jiao K, Tang M, Liu Q, Zhang L, Liu H. Palladium-catalyzed cascade cyclization of allenamide with 2-iodoanilines to access functionalized indoloquinolines. Org Biomol Chem 2023; 21:279-283. [PMID: 36484347 DOI: 10.1039/d2ob01770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel and efficient palladium-catalyzed cascade cyclization to indoloquinoline derivatives in one pot has been developed by using allenamide derivatives and 2-iodoanilines as the key building blocks. The process involved two cyclizations: intramolecular cyclization/π-allylic substitution and intramolecular 6-endo Heck cyclization. Furthermore, dihydrobenzofuro[2,3-b]quinoline derivatives could also be achieved via this strategy using allenyl ethers instead of allenamides. The readily available substrates, mild conditions, high efficiency and step economy make this strategy a promising method in the synthesis of polycyclic motifs.
Collapse
Affiliation(s)
- Wenzhe Geng
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Hui Wang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China. .,Shandong Jincheng Biopharmaceutical Co., Ltd., No. 3 Shuangshan Road of Xingshan, Zibo 255049, P. R. China
| | - Juan Xi
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Ruonan Jiang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Jintao Guo
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Keqiang Jiao
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Mengyao Tang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Qing Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Lizhi Zhang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China.
| | - Hui Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China. .,Shandong Jincheng Biopharmaceutical Co., Ltd., No. 3 Shuangshan Road of Xingshan, Zibo 255049, P. R. China
| |
Collapse
|
2
|
Hourtoule M, Zheng Y, Perfetto A, Luise D, Ciofini I, Miesch L. One-Pot anti-Michael Regio- and Stereoselective Hydroamination of Activated N-Allenamides. J Org Chem 2022; 87:5404-5411. [PMID: 35344371 DOI: 10.1021/acs.joc.2c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Allenamides, substituted by an ester at the γ-position, were obtained through addition of terminal ynamides with ethyl diazoacetate under copper catalysis for the first time. Regio- and stereoselective hydroamination of those activated N-allenamides provided exclusively E-configured captodative enamimes through a one-pot anti-Michael addition. Numerous ynamides as well as various secondary amines were adapted in this process.
Collapse
Affiliation(s)
- Maxime Hourtoule
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Yongxiang Zheng
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Anna Perfetto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| | - Davide Luise
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| |
Collapse
|
3
|
Yang Y, Wang H, Sun Z, Li X, Sun F, Liu Q, Zhang L, Xu L, Liu H. Palladium-catalyzed regiodivergent arylamination/aryloxygenation of allenamide. Org Chem Front 2022. [DOI: 10.1039/d2qo01271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In regiodivergent arylamination/aryloxygenation of allenamides, use of Cy2NMe caused 2,1-arylamination and the corresponding alkenes were formed with excellent Z configuration. Whereas, utilizing Ag2CO3 caused 2,3-aryloxygenation via an unexpected CO2 insertion from Ag2CO3.
Collapse
Affiliation(s)
- Yi Yang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Hui Wang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Zehua Sun
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Xinjin Li
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Fenggang Sun
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Qing Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Lizhi Zhang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Liping Xu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Hui Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| |
Collapse
|
4
|
Chi X, Xia T, Yang Y, Cao T, Zhang D, Liu H. Highly Diastereoselective Synthesis of Octahydro-1H-cyclpenta[c]pyridine Skeleton via Pd/Au-Relay Catalyzed Cascade Reaction of (Z)-1-Iodo-1,6-diene and Alkyne. Org Chem Front 2022. [DOI: 10.1039/d2qo00233g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Octahydro-1H-cyclopenta[c]pyridine Skeletons exist in a broad spectrum of bioactive natural products, and the development of efficient and convenient protocols to construct this skeleton remains a challenging task. Herein, we...
Collapse
|
5
|
Du X, Zhao H, Li X, Zhang L, Dong Y, Wang P, Zhang D, Liu Q, Liu H. Ligand-Regulated Palladium-Catalyzed Regiodivergent Hydroarylation of the Distal Double Bond of Allenamides with Aryl Boronic Acid. J Org Chem 2021; 86:13276-13288. [PMID: 34541854 DOI: 10.1021/acs.joc.1c01303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-regulated regiodivergent hydroarylation of the distal double bond of allenamides with aryl boronic acid was achieved in the presence of palladium(II) catalysts, delivering a variety of functionalized enamide with excellent E selectivity and Markovnikov/anti-Markovnikov selectivity. Two possible coordination intermediates were proposed to be responsible for the regiodivergent hydroarylation: (1) The coordination Intermediate I, which was proposed to be formed through the coordination of MeCN, distal double bond, phenyl to palladium, led to the aryl group away from the Intermediate I, inducing excellent E selectivity and anti-Markovnikov selectivity. (2) A switch of regioselectivity to 1,2-Markovnikov hydroarylation was obtained using bidentate phosphine ligand (dppf or Xantphos). The formed coordination Intermediate II led to the N-tether away from the Intermediate II and at the trans position of aryl, resulting in excellent E selectivity and Markovnikov selectivity. Meanwhile, tentative investigation on the mechanism proved that the hydron source of this hydroarylation is more likely to be boronic acid. The transmetallation between aryl boronic acid and palladium catalyst was the initial step of this transformation.
Collapse
Affiliation(s)
- Xin Du
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Huan Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Xinling Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
6
|
Chen X, Zhang G, Zeng R. Dehydrogenative Aza-[4 + 2] Cycloaddition of Amines with 1,3-Dienes via Dual Catalysis. Org Lett 2021; 23:7144-7149. [PMID: 34459616 DOI: 10.1021/acs.orglett.1c02558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We describe a synergistic utilization of copper catalysis and proton-transfer catalysis that enables an atom- and step-economical aza-[4 + 2] cycloaddition reaction of readily available N-arylamino carbonyl compounds with simple 1,3-dienes. The reaction proceeds smoothly under an air atmosphere and produces water as the sole side product. Whereas the amines can directly serve as the C- and N-atom donors, this operationally simple protocol provides green, rapid, and efficient access to 1,2,3,6-tetrahydropyridines with a broad scope.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Guoxiang Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
7
|
Li J, Yang Y, Liu Y, Liu Q, Zhang L, Li X, Dong Y, Liu H. Palladium/Norbornene Catalyzed ortho Amination/Cyclization of Aryl Iodide: Process to 3-Methyl-indole Derivates and Controllable Reductive Elimination against the Second Amination. Org Lett 2021; 23:2988-2993. [PMID: 33764786 DOI: 10.1021/acs.orglett.1c00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium/norbornene cooperative catalyzed selective C-H bond amination of aryl iodides was explored, providing an efficient tool for constructing benzocyclic molecules. When ortho-substituted iodobenzene was involved, the C-H bond amination and following Heck cyclization efficiently delivered a 3-methyl-indole scaffold. On the other hand, we realized the controllable synthesis of monoaminated benzo-cyclobutanyl scaffold. The possible coordination of an installed terminal alkenyl group with palladium and steric hindrance were proposed to be responsible for the monoamination selectivity.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Yi Yang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Yunxia Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Qing Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Lizhi Zhang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Xinjin Li
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Yunhui Dong
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Hui Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| |
Collapse
|
8
|
Cao C, Yang Y, Li X, Liu Y, Liu H, Zhao Z, Chen L. Pd‐Catalyzed Cascade Metallo‐Ene Cyclization/Metallo‐Carbene Coupling of Allenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chengqiang Cao
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Yi Yang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Xin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Yunxia Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Lei Chen
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| |
Collapse
|