1
|
Ma Z, Wu X, Li H, Cao Z, Zhu C. Access to pyrrolines and fused diaziridines by selective radical addition to homoallylic diazirines. Chem Sci 2024; 15:1879-1884. [PMID: 38303955 PMCID: PMC10829008 DOI: 10.1039/d3sc04886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Pyrroline derivatives are common in bioactive natural products and therapeutic agents. We report here a synthesis of pyrrolines and fused diaziridines by divergent radical cyclization of homoallylic diazirines, which can serve as an internal radical trap and a nitrogen source. This reaction proceeds by selective radical addition to C[double bond, length as m-dash]C or N[double bond, length as m-dash]N bonds followed by intramolecular cyclization. Frontier molecular orbital analysis provides a deep insight into the origin of the selectivity. The reaction demonstrates a new cyclization mode, broad functional group compatibility and high product diversity, and reveals a much broader chemical space for diazirine studies.
Collapse
Affiliation(s)
- Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Haotian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
2
|
Wang R, Wang C. Asymmetric imino-acylation of alkenes enabled by HAT-photo/nickel cocatalysis. Chem Sci 2023; 14:6449-6456. [PMID: 37325152 PMCID: PMC10266448 DOI: 10.1039/d3sc01945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
By merging nickel-mediated facially selective aza-Heck cyclization and radical acyl C-H activation promoted by tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer (HAT) photocatalyst, we accomplish an asymmetric imino-acylation of oxime ester-tethered alkenes with readily available aldehydes as the acyl source, enabling the synthesis of highly enantioenriched pyrrolines bearing an acyl-substituted stereogenic center under mild conditions. Preliminary mechanistic studies support a Ni(i)/Ni(ii)/Ni(iii) catalytic sequence involving the intramolecular migratory insertion of a tethered olefinic unit into the Ni(iii)-N bond as the enantiodiscriminating step.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
3
|
Dong YX, Zhang CL, Gao ZH, Ye S. Iminoacylation of Alkenes via Photoredox N-Heterocyclic Carbene Catalysis. Org Lett 2023; 25:855-860. [PMID: 36700625 DOI: 10.1021/acs.orglett.3c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The iminoacylation of alkenes via photoredox N-heterocyclic carbene catalysis is developed with the employment of alkene-tethered α-imino-oxy acids and acyl imidazoles. The corresponding substituted 3,4-dihydro-2H-pyrroles were afforded in moderate to good yields with good to high diastereoselectivities in most cases. The reaction involves the 5-exo-trig radical cyclization of an alkene-tethered iminyl radical and the following coupling with a ketyl radical from acyl imidazole under NHC catalysis.
Collapse
Affiliation(s)
- Yi-Xiong Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Cheng D, Meng XZ, Tian F, Yan D, Wang X, Qian X, Wang J. Crystal structure and Hirshfeld surface analysis of 4-(3-meth-oxy-phen-yl)-2,6-di-phenyl-pyridine. Acta Crystallogr E Crystallogr Commun 2022; 78:932-935. [PMID: 36072513 PMCID: PMC9443808 DOI: 10.1107/s2056989022007812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
The title compound, C24H19NO, was obtained via the reaction of (1E,2E)-3-(3-meth-oxy-phen-yl)-1-phenyl-prop-2-en-1-one with ethyl 2-oxo-propano-ate, using NH4I as a catalyst. The compound crystallizes in the monoclinic space group I2/a. In the mol-ecule, the four rings are not in the same plane, the pyridine ring being inclined to the benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°. In the crystal, mol-ecules are linked by C-H⋯π inter-actions into a three-dimensional network. To further analyse the inter-molecular inter-actions, a Hirshfeld surface analysis was performed. Hirshfeld surface analysis indicates that the most abundant contributions to the crystal packing are from H⋯H (50.4%), C⋯H/H⋯C (37.9%) and O⋯H/H⋯O (5.1%) inter-actions.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Chemical and Material Engineering, Chaohu College, Chaohu, People’s Republic of China
| | - Xiang-Zhen Meng
- Department of Chemical and Material Engineering, Chaohu College, Chaohu, People’s Republic of China
| | - Fuyu Tian
- Department of Chemical and Material Engineering, Chaohu College, Chaohu, People’s Republic of China
| | - Dong Yan
- Department of Chemical and Material Engineering, Chaohu College, Chaohu, People’s Republic of China
| | - Xiaofei Wang
- Department of Chemical and Material Engineering, Chaohu College, Chaohu, People’s Republic of China
| | - Xueli Qian
- Department of Chemical and Material Engineering, Chaohu College, Chaohu, People’s Republic of China
| | - Junnan Wang
- Department of Chemical and Material Engineering, Chaohu College, Chaohu, People’s Republic of China
| |
Collapse
|
5
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
6
|
Wei WX, Kong X, Jiao RQ, Li XS, Wang CT, Li Y, Liang YM. Regioselective synthesis of spirocyclic pyrrolines via a palladium-catalyzed Narasaka-Heck/C-H activation/[4 + 2] annulation cascade reaction. Chem Sci 2022; 13:6348-6354. [PMID: 35733897 PMCID: PMC9159093 DOI: 10.1039/d2sc01887j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
A novel palladium-catalyzed spirocyclization through sequential Narasaka-Heck cyclization, C-H activation and [4 + 2] annulation has been developed. In this reaction, cheap and readily available 2-chlorobenzoic acid or ethyl phenylpropiolate was employed as the C2 insertion unit to react with γ,δ-unsaturated oxime ester. The key step in this transformation is the regioselective insertion of the C2 synthon into the spiro-palladacycle intermediate that is formed by the δ-C-H activation process, thereby efficiently assembling a series of spirocyclic pyrrolines with high regiocontrol. Furthermore, density functional theory (DFT) calculations and control experiments were performed to gain some insights into the reaction mechanism.
Collapse
Affiliation(s)
- Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Yuke Li
- Department of Chemistry, Centre for Scientific Modeling and Computation, Chinese University of Hong Kong Shatin Hong Kong P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
7
|
Yan X, Fan L, Zhang X, Liu G. Recent advances in Cu-catalyzed carbonylation with CO. Org Chem Front 2022. [DOI: 10.1039/d2qo01419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transition metal-catalyzed carbonylation has emerged as a powerful and versatile strategy for the efficient construction of complicated carbonyl-containing molecules from simple chemical feedstocks in the past decades.
Collapse
Affiliation(s)
- Xinlong Yan
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| | - Lin Fan
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| | - Xiangdong Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| |
Collapse
|
8
|
Rong B, Xu G, Yan H, Zhang S, Wu Q, Zhu N, Duan J, Guo K. The copper-catalyzed synthesis of dihydrooxazoles from α,β-unsaturated ketoximes and activated ketones. Chem Commun (Camb) 2021; 57:7272-7275. [PMID: 34195708 DOI: 10.1039/d1cc02422a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first copper-catalyzed [3+2]-type condensation reaction of α,β-unsaturated ketoximes with activated ketones has been described for the synthesis of dihydrooxazoles, especially trifluoromethyl-decorated dihydrooxazoles. Notable features of this method include its broad substrate scope, good functional group tolerance, and simple operation.
Collapse
Affiliation(s)
- Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wei WX, Li Y, Wen YT, Li M, Li XS, Wang CT, Liu HC, Xia Y, Zhang BS, Jiao RQ, Liang YM. Experimental and Computational Studies of Palladium-Catalyzed Spirocyclization via a Narasaka-Heck/C(sp 3 or sp 2)-H Activation Cascade Reaction. J Am Chem Soc 2021; 143:7868-7875. [PMID: 33974798 DOI: 10.1021/jacs.1c04114] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first synthesis of highly strained spirocyclobutane-pyrrolines via a palladium-catalyzed tandem Narasaka-Heck/C(sp3 or sp2)-H activation reaction is reported here. The key step in this transformation is the activation of a δ-C-H bond via an in situ generated σ-alkyl-Pd(II) species to form a five-membered spiro-palladacycle intermediate. The concerted metalation-deprotonation (CMD) process, rate-determining step, and energy barrier of the entire reaction were explored by density functional theory (DFT) calculations. Moreover, a series of control experiments was conducted to probe the rate-determining step and reversibility of the C(sp3)-H activation step.
Collapse
Affiliation(s)
- Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ya-Ting Wen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Bo-Sheng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Singh J, Nickel GA, Cai Y, Jones DD, Nelson TJ, Small JE, Castle SL. Synthesis of Functionalized Pyrrolines via Microwave-Promoted Iminyl Radical Cyclizations. Org Lett 2021; 23:3970-3974. [PMID: 33955760 DOI: 10.1021/acs.orglett.1c01148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
O-Phenyloximes tethered to alkenes undergo 5-exo-trig iminyl radical cyclizations upon microwave irradiation. Trapping of the resulting cyclic radicals results in C-C, C-N, C-O, C-S, or C-X bond formation. Allylic sulfides undergo a tandem cyclization-thiyl radical β-elimination, affording terminal alkenes. The cyclizations exhibit a broad scope, and in some cases they are highly diastereoselective. The pyrroline adducts are versatile intermediates that can be transformed into a range of different species.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Garrison A Nickel
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yu Cai
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dakota D Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tanner J Nelson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jeshurun E Small
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
11
|
Shen X, Huang C, Yuan X, Yu S. Diastereoselective and Stereodivergent Synthesis of 2‐Cinnamylpyrrolines Enabled by Photoredox‐Catalyzed Iminoalkenylation of Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xu Shen
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Congcong Huang
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Shen X, Huang C, Yuan X, Yu S. Diastereoselective and Stereodivergent Synthesis of 2‐Cinnamylpyrrolines Enabled by Photoredox‐Catalyzed Iminoalkenylation of Alkenes. Angew Chem Int Ed Engl 2021; 60:9672-9679. [DOI: 10.1002/anie.202016941] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Shen
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Congcong Huang
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- School of chemistry and chemical engineering Qufu Normal University Qufu 273165 China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Zhang X, Qi D, Jiao C, Zhang Z, Liu X, Zhang G. Ni-Catalyzed direct iminoalkynylation of unactivated olefins with terminal alkynes: facile access to alkyne-labelled pyrrolines. Org Chem Front 2021. [DOI: 10.1039/d1qo01217g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first example of iminoalkynylation of unactivated olefins with terminal alkynes was achieved by a nickel-catalyzed iminyl-radical cyclization/Sonogashira-type coupling sequence.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Zhang Y, Wu XF. Iron-catalyzed carbonylative cyclization of γ,δ-unsaturated aromatic oxime esters with amines. Chem Commun (Camb) 2020; 56:14605-14608. [DOI: 10.1039/d0cc06671k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient iron-catalyzed carbonylative cyclization of γ,δ-unsaturated aromatic oxime esters with amines has been developed.
Collapse
Affiliation(s)
- Youcan Zhang
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- Albert-Einstein-Straße 29a
- Rostock 18059
- Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- Albert-Einstein-Straße 29a
- Rostock 18059
- Germany
- Dalian National Laboratory for Clean Energy
| |
Collapse
|
15
|
Gui QW, Teng F, Li ZC, Jin XF, Zhang M, Dai JN, Lin YW, Cao Z, He WM. Molecular iodine-catalyzed multicomponent synthesis of α-cyanopyrrolines with ambient air as the oxidant under neat conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo01113d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An eco-friendly and practical method for synthesizing α-cyanopyrrolines via iodine-catalyzed multicomponent tandem reaction of alkenes, TMSCN and N,N-disubstituted formamides with ambient air as the sole oxidant was developed.
Collapse
Affiliation(s)
- Qing-Wen Gui
- College of Chemistry and Materials Science
- Hunan Agricultural University
- Changsha 410128
- China
| | - Fan Teng
- College of Chemistry and Materials Science
- Hunan Agricultural University
- Changsha 410128
- China
| | - Zhou-Chao Li
- College of Chemistry and Materials Science
- Hunan Agricultural University
- Changsha 410128
- China
| | - Xue-Feng Jin
- College of Chemistry and Materials Science
- Hunan Agricultural University
- Changsha 410128
- China
| | - Mei Zhang
- College of Chemistry and Materials Science
- Hunan Agricultural University
- Changsha 410128
- China
| | - Jia-Ni Dai
- College of Chemistry and Materials Science
- Hunan Agricultural University
- Changsha 410128
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang
- China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Wei-Min He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| |
Collapse
|