1
|
Das B, Dahiya A, Patel BK. Isothiocyanates: happy-go-lucky reagents in organic synthesis. Org Biomol Chem 2024; 22:3772-3798. [PMID: 38656266 DOI: 10.1039/d4ob00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Owing to their unique structural features, isothiocyanates (ITCs) are a class of highly useful and inimitable reagents as the -NCS group serves both as electrophile and nucleophile in organic synthesis. ITCs share a rich legacy in organic, medicinal, and combinatorial chemistry. Compared to their oxygen equivalents, isocyanates, ITCs are easily available, less unpleasant, and somewhat less harmful to work with (mild conditions) which makes them happy-go-lucky reagents. Functionalized ITCs can finely tune the reactivity of the -NCS group and thus can be exploited in the late-stage functionalization processes. This review's primary aim is to outline ITC chemistry in the construction and derivatization of heterocycles through the lens of sustainability. For ease and brevity, the sections are divided based on reactive centers present in functionalized ITCs and modes of cyclisation. Scrutinizing their probable unexplored directions for future research studies is also addressed.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Department of Chemistry, Bagadhar Brahma Kishan College, Jalah, Assam 781327, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
2
|
Wang YT, Zhang M, Liu ZX, Wu YX, Yan Q, Liu CL, Li JS, Li ZW, Liu HW, Li WS. Visible-Light-Promoted Radical Cascade Cyclization of 2-Vinyl Benzimidazoles: Access to Benzo[4,5]imidazo[1,2- b]isoquinolin- 11(6 H)-ones. J Org Chem 2024. [PMID: 38738957 DOI: 10.1021/acs.joc.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A visible-light-enabled photoredox radical cascade cyclization of 2-vinyl benzimidazole derivatives is developed. This chemistry is applicable to a wide range of N-aroyl 2-vinyl benzimidazoles as acceptors, and halo compounds, including alkyl halides, acyl chlorides and sulfonyl chlorides, as radical precursors. The Langlois reagent also serves as an effective partner in this photocatalytic oxidative cascade process. This protocol provides a robust alternative for rendering highly functionalized benzo[4,5]imidazo[1,2-b]isoquinolin-11(6H)-ones.
Collapse
Affiliation(s)
- Yao-Tian Wang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mai Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Xing Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yu-Xin Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Qian Yan
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Cheng-Liang Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jiang-Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Han-Wen Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wen-Sheng Li
- College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Jadav JP, Vankar JK, Gupta A, Gururaja GN. Atmospheric Oxygen Facilitated Oxidative Amidation to α-Ketoamides and Unusual One Carbon Degradative Amidation to N-Alkyl Amides. J Org Chem 2023; 88:15551-15561. [PMID: 37883330 DOI: 10.1021/acs.joc.3c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A mild, transition-metal-free novel synthetic approach for the construction of C═O and C-N bonds has been demonstrated. Easily accessible gem-dibromoalkenes under similar conditions form oxidative amidation product α-ketoamides and unusual degradative amidation product N-alkyl amides by simply changing the amine substitute. Atmospheric air containing molecular oxygen proved to be an ideal oxidant for an amidation reaction. Under similar conditions, the electron-deficient gem-dibromoalkenes play a dual role with different formamides forming novel oxidative amidation products and by the state of art neighboring group participation of amine to unusual one-carbon degradative amidation products.
Collapse
Affiliation(s)
- Jaydeepbhai P Jadav
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Jigarkumar K Vankar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Ankush Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | | |
Collapse
|
4
|
Zhong P, Wang YC, Liu JB, Zhang L, Luo N. K 2CO 3-promoted synthesis of amides from 1-aryl-2,2,2-trifluoroethanones and amines under mild conditions. RSC Adv 2023; 13:18160-18164. [PMID: 37333725 PMCID: PMC10269829 DOI: 10.1039/d3ra03329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023] Open
Abstract
A base-promoted amidation of 1-aryl-2,2,2-trifluoroethanones with amines via Haller-Bauer reaction has been developed. In this reaction, the direct transformation of 1-aryl-2,2,2-trifluoroethanones into amides via C(O)-C bond cleavage occurs without the use of any stoichiometric chemical oxidants or transition-metal catalysts. A series of primary and secondary amines are shown to be compatible with this transformation, and several pharmaceutical molecules were synthesized.
Collapse
Affiliation(s)
- Pinyong Zhong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yu-Chao Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Jin-Biao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Linjun Zhang
- Jiangxi Province Zhonggantou Survey and Design Co., Ltd. Nanchang 330029 China
| | - Nianhua Luo
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 China
| |
Collapse
|
5
|
Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Zhong P, Wu J, Liu JB, Luo N. Atmosphere-controlled selective synthesis of ureas and thioureas from isothiocyanates. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
8
|
Zhong P, Wu J, Wu J, Liu K, Wan C, Liu JB. Solvent-controlled selective synthesis of amides and thioureas from isothiocyanates. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Ma Q, Zhang S, Yuan Y, Ding H, Li Y, Sun Z, Yuan Y, Jia X. Multifunctionalization of sp3 C‐H Bond of Tetrahydroisoquinolines through C‐H Activation Relay (CHAR) Using α‐Cyanotetrahydroisoquinolines as the Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiyuan Ma
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Shuwei Zhang
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuan Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Han Ding
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuemei Li
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Zheng Sun
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yu Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Xiaodong Jia
- Yangzhou University School of Chemistry and Chemical Engineering, Yangzhou University 180 Siwangting Road 225002 Yangzhou CHINA
| |
Collapse
|
10
|
Xiaojing T, Zhenzhen F, Si J, Zhiwei L, Jiangsheng L, Yuefei Z, Cuihong L, Weidong L. Metal-Free Synthesis of Benzimidazo[1,2- c]quinazolines from N-Cyanobenzimidazoles via Double C—H Functionalizations. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Shen J, Li S, Yao Z, Lin S, Cui X. Base-promoted Cyclization Reaction of o-Isothiocyanato Arylacetylenes and Aroylacetonitriles: Easy Access to Benzo[d][1,3]thiazines. Org Biomol Chem 2022; 20:7236-7240. [DOI: 10.1039/d2ob01424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and efficient synthesis of benzo[d][1,3]thiazines through base-promoted cyclization reaction of o-isothiocyanato arylacetylenes with aroylacetonitriles has been developed. This protocol displays high step economy and efficiency, and tolerates various...
Collapse
|