1
|
Yang Y, Geng C, Shen H, Chao J, Wang Z, Cong W, Li X, Ye G, Jiang Y. Systematical Mutational Analysis of FRATtide against Osteoclast Differentiation by Alanine Scanning. ACS Med Chem Lett 2024; 15:1242-1249. [PMID: 39140067 PMCID: PMC11318000 DOI: 10.1021/acsmedchemlett.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Osteoporosis, a global bone disease, results in decreased bone density, mass, and microarchitecture deterioration, increasing fracture risk. In previous research, FRATtide, a peptide derived from a glycogen synthase kinase-3 binding protein, effectively hindered osteoclast differentiation to yield therapeutically potent derivatives via single and double stapling. However, FRATtide's structure-activity relationship remains unclear. This study synthesized 25 FRATtide-derived peptides through systematic alanine scanning and evaluated their activities. Substitutions in Pro2, Leu5, Leu9, Val10, Leu11, Ser12, Asn14, Leu15, Ile16, Glu18, Arg22, Ser25, and Arg26 showed reduced activity, while FRT13 and FRT20 with Gly13 and Arg21 substitutions, respectively, displayed enhanced activities. F-actin binding and bone resorption assays on FRT13 and FRT20 showed better inhibition of osteoclast differentiation and bone resorption compared with FRATtide. This study elucidated FRATtide's structure-activity relationship, thereby facilitating future structural optimization for osteoporosis treatment.
Collapse
Affiliation(s)
- Yi Yang
- School
of Pharmacy, Anhui Medical University, HeFei 230032, China
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chenchen Geng
- School
of Pharmacy, Anhui Medical University, HeFei 230032, China
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Huaxing Shen
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Jingru Chao
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhe Wang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Cong
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guangming Ye
- Xinrui
Hospital, Xinwu District, Wuxi, 214000, China
| | | |
Collapse
|
2
|
Liang H, Shen H, Zheng M, Shi Y, Li X. Systematical mutational analysis of teriparatide on anti-osteoporosis activity by alanine scanning. Bioorg Med Chem Lett 2024; 104:129732. [PMID: 38583785 DOI: 10.1016/j.bmcl.2024.129732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Osteoporosis is a progressive systemic skeletal disease that decreases bone density and bone quality, making them fragile and easy to break. In spite of effective anti-osteoporosis potency, teriparatide, the first anabolic medications approved for the treatment of osteoporosis, was proven to exhibit various side effects. And the relevant structure-activity relationship (SAR) of teriparatide was in need. In this work, we performed a systematical alanine scanning against teriparatide and synthesized 34 teriparatide derivatives. Their biological activities were evaluated and the importance of each residue for anti-osteoporosis activity was also revealed. A remarkable decrease in activity was observed for alanine replacement of the residue Gly12, His14, Ser17, Arg20 and Leu24, showcasing the important role of these residues in teriparatide on anti-osteoporosis activity. On contrary, when Gly13 and Gln30 were mutated to Ala, the peptide derivatives exhibited the significantly increased activities, demonstrating that these two residues could be readily replaced. Our research expanded the peptide library of teriparatide analogues and presented a potential opportunity for designing the more powerful anti-osteoporosis peptide agents.
Collapse
Affiliation(s)
- Haiyan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Huaxing Shen
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China
| | - Mengjun Zheng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Yejiao Shi
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Xiang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
3
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
4
|
Cong W, Shen H, Liao X, Zheng M, Kong X, Wang Z, Chen S, Li Y, Hu H, Li X. Discovery of an orally effective double-stapled peptide for reducing ovariectomy-induced bone loss in mice. Acta Pharm Sin B 2023; 13:3770-3781. [PMID: 37719364 PMCID: PMC10502273 DOI: 10.1016/j.apsb.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 09/19/2023] Open
Abstract
Stapled peptides with significantly enhanced pharmacological profiles have emerged as promising therapeutic molecules due to their remarkable resistance to proteolysis and performance to penetrate cells. The all-hydrocarbon peptide stapling technique has already widely adopted with great success, yielding numerous potent peptide-based molecules. Based on our prior efforts, we conceived and prepared a double-stapled peptide in this study, termed FRNC-1, which effectively attenuated the bone resorption capacity of mature osteoclasts in vitro through specific inhibition of phosphorylated GSK-3β. The double-stapled peptide FRNC-1 displayed notably improved helical contents and resistance to proteolysis than its linear form. Additionally, FRNC-1 effectively prevented osteoclast activation and improved bone density for ovariectomized (OVX) mice after intravenous injection and importantly, after oral (intragastric) administration. The double-stapled peptide FRNC-1 is the first orally effective peptide that has been validated to date as a therapeutic candidate for postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Wei Cong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Huaxing Shen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiufei Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Tarim University, Xinjiang Uygur Autonomous Region, Alar City 843300, China
| | - Mengjun Zheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xianglong Kong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Si Chen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yulei Li
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Honggang Hu
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Zheng M, Wang R, Chen S, Zou Y, Yan L, Zhao L, Li X. Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides. Antibiotics (Basel) 2021; 10:956. [PMID: 34439006 PMCID: PMC8389037 DOI: 10.3390/antibiotics10080956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Aurein1.2 is a 13-residue antimicrobial peptide secreted by the Australian tree frog Litoria aurea. In order to improve its stabilities, the helical contents and corresponding biological activities of Aurein1.2 (a series of stapled analogues) were synthesized, and their potential antifungal activities were evaluated. Not surprisingly, the stapled Aurein1.2 peptides showed higher proteolytic stability and helicity than the linear counterpart. The minimum inhibitory concentration (MIC) of ten stapled peptides against six strains of common pathogenic fungi was determined by the microscale broth dilution method recommended by CLSI. Of them, Sau-1, Sau-2, Sau-5, and Sau-9 exhibited better inhibitory effects on the fungi than the linear peptide. These stapled Aurein1.2 peptides may serve as the leading compounds for further optimization and antifungal therapy.
Collapse
Affiliation(s)
- Mengjun Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (R.W.); (Y.Z.)
| | - Ruina Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (R.W.); (Y.Z.)
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China;
| | - Yan Zou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (R.W.); (Y.Z.)
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (R.W.); (Y.Z.)
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (R.W.); (Y.Z.)
| |
Collapse
|
6
|
Liu J, Chen S, Chai XY, Gao F, Wang C, Tang H, Li X, Liu Y, Hu HG. Design, synthesis, and biological evaluation of stapled ascaphin-8 peptides. Bioorg Med Chem 2021; 40:116158. [PMID: 33932712 DOI: 10.1016/j.bmc.2021.116158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023]
Abstract
Ascaphin-8 is an α-helical anti-tumor and antimicrobial peptide containing 19 residues, which was isolated from norepinephrine-stimulated skin secretions of the North American tailed frog Ascaphus truei. To improve both its stability and biological activities, a series of hydrocarbon-stapled analogs of Ascaphin-8 were synthesized and investigated for their potential antiproliferative activities. The activity studies were evaluated using the CCK-8 method and colony formation assay on human cancer cell lines. Ascaphin-8-3, as the most active peptide, showed a stronger inhibition effect when compared with the parent peptide for the tested cell lines. In addition, the effect of Ascaphin-8-3 on inhibiting the metastatic capabilities of A549 cells was more powerful than that of the parent peptide. This peptide derivative showed potentiality for further optimization in antitumor drugs.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Xiao-Yun Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Fei Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Chen Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Hua Tang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Hong-Gang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Wang N, Xie G, Liu C, Cong W, He S, Li Y, Fan L, Hu HG. Design, Synthesis, and Antitumor Activities Study of Stapled A4K14-Citropin 1.1 Peptides. Front Chem 2020; 8:616147. [PMID: 33363118 PMCID: PMC7758422 DOI: 10.3389/fchem.2020.616147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023] Open
Abstract
A4K14-citropin 1.1 is a structurally optimized derivative derived from amphibians' skin secreta peptide Citropin, which exhibits broad biological activities. However, the application of A4K14-citropin 1.1 as a cancer therapeutic is restricted by its structural flexibility. In this study, a series of all-hydrocarbon stapled peptides derivatives of A4K14-citropin 1.1 were designed and synthesized, and their chemical and biological characteristics were also investigated. Among them, A4K14-citropin 1.1-Sp1 and A4K14-citropin 1.1-Sp4 displayed improved helicity levels, greater protease stability, and increased antitumor activity compared with the original peptide, which establishes them as promising lead compounds for novel cancer therapeutics development. These results revealed the important influence of all-hydrocarbon stapling side chain on the secondary structure, hydrolase stability, and biological activity of A4K14-citropin 1.1.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Chao Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Li Fan
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hong-Gang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|