1
|
Li H, Ji D, Zhang Y, Cui Y, Cheng Y, Wang S, Dai WL. Size-Dependent Copper Nanoparticles Supported on Carbon Nanotubes with Balanced Cu + and Cu 0 Dual Sites for the Selective Hydrogenation of Ethylene Carbonate. Chemistry 2024; 30:e202402699. [PMID: 39354575 DOI: 10.1002/chem.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Cyclic carbonate hydrogenation offers an alternative for the efficient indirect CO2 utilization. In this study, a series of carbon nanotubes (CNTs) supported xCu/CNTs catalysts with different Cu loadings were fabricated using a convenient impregnation method, and exhibited excellent catalytic activity for the hydrogenation of ethylene carbonate to methanol and ethylene glycol. The structural and physicochemical properties revealed that acid treatment of CNTs resulted in plentiful oxygen-containing functional groups, providing sufficient anchoring sites for copper species. The calcination process conducted under an inert atmosphere resulted in the formation of ternary CuO, Cu2O, and Cu composites, enhancing the metal-support interaction and facilitating the formation of balanced Cu0 and Cu+ dual sites as well as high active surface area after reduction. Contributed to the synergetic effect of balanced Cu+ and Cu0 species proved by density functional theory calculation and the electron-rich CNTs surface, the 40Cu/CNTs catalyst achieved strengthened catalytic performance with methanol yield of 83 %, ethylene glycol yield of 99 % at ethylene carbonate conversion of >99 %, and 150 h of long-term running stability. Consequently, CNTs supported Cu serve as efficient non-silica based catalyst for ester hydrogenation.
Collapse
Affiliation(s)
- Huabo Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Deyuan Ji
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Yanfei Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Yuanyuan Cui
- Shimadzu China Co. Ltd., Shanghai, 200030, P. R. China
| | - Yinfeng Cheng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Songlin Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Wei-Lin Dai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
3
|
Fayisa BA, Yang Y, Zhen Z, Wang MY, Lv J, Wang Y, Ma X. Engineered Chemical Utilization of CO 2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Busha Assaba Fayisa
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ziheng Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei-Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|