1
|
Foroutan Kalourazi A, Nazemi SA, Unniram Parambil AR, Muñoz-Tafalla R, Vidal P, Shahangian SS, Guallar V, Ferrer M, Shahgaldian P. Exploiting cyclodextrins as artificial chaperones to enhance enzyme protection through supramolecular engineering. NANOSCALE 2024; 16:5123-5129. [PMID: 38349359 DOI: 10.1039/d3nr06044f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We report a method of enzyme stabilisation exploiting the artificial protein chaperone properties of β-cyclodextrin (β-CD) covalently embedded in an ultrathin organosilica layer. Putative interaction points of this artificial chaperone system with the surface of the selected enzyme were studied in silico using a protein energy landscape exploration simulation algorithm. We show that this enzyme shielding method allows for drastic enhancement of enzyme stability under thermal and chemical stress conditions, along with broadening the optimal temperature range of the biocatalyst. The presence of the β-CD macrocycle within the protective layer supports protein refolding after treatment with a surfactant.
Collapse
Affiliation(s)
- Ali Foroutan Kalourazi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Seyed Amirabbas Nazemi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
| | - Ajmal Roshan Unniram Parambil
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Ruben Muñoz-Tafalla
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Paula Vidal
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain
| | - Patrick Shahgaldian
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| |
Collapse
|
2
|
Reyre JL, Grisel S, Haon M, Xiang R, Gaillard JC, Armengaud J, Guallar V, Margeot A, Arragain S, Berrin JG, Bissaro B. Insights into peculiar fungal LPMO family members holding a short C-terminal sequence reminiscent of phosphate binding motifs. Sci Rep 2023; 13:11586. [PMID: 37463979 DOI: 10.1038/s41598-023-38617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.
Collapse
Affiliation(s)
- Jean-Lou Reyre
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Sacha Grisel
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Mireille Haon
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Ruite Xiang
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Simon Arragain
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France.
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
| |
Collapse
|
3
|
Serneels L, Narlawar R, Benito LP, Municoy M, Guallar V, T'Syen D, Dewilde M, Bischoff F, Fraiponts E, Tresadern G, Roevens PWM, Gijsen HJM, De Strooper B. Selective inhibitors of the PSEN1-gamma-secretase complex. J Biol Chem 2023:104794. [PMID: 37164155 DOI: 10.1016/j.jbc.2023.104794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease, was aborted because of serious mechanism based side effects in phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as catalytic subunit and APH1A or APH1B as supporting subunits, do provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) towards the PSEN1-APH1B sub-complex versus PSEN2 sub-complexes. We used modelling and site directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.
Collapse
Affiliation(s)
- Lutgarde Serneels
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
| | - Rajeshwar Narlawar
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium; Discovery Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Laura Perez Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Marti Municoy
- Nostrum Biodiscovery, Jordi Girona 29, Nexus II D128, 08034, Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Dries T'Syen
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
| | - Maarten Dewilde
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
| | - François Bischoff
- Discovery Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Erwin Fraiponts
- Charles River Laboratories, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Peter W M Roevens
- Campus Strategy & Partnerships, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Harrie J M Gijsen
- Discovery Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium; Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
4
|
Puch-Giner I, Molina A, Municoy M, Pérez C, Guallar V. Recent PELE Developments and Applications in Drug Discovery Campaigns. Int J Mol Sci 2022; 23:ijms232416090. [PMID: 36555731 PMCID: PMC9788188 DOI: 10.3390/ijms232416090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Computer simulation techniques are gaining a central role in molecular pharmacology. Due to several factors, including the significant improvements of traditional molecular modelling, the irruption of machine learning methods, the massive data generation, or the unlimited computational resources through cloud computing, the future of pharmacology seems to go hand in hand with in silico predictions. In this review, we summarize our recent efforts in such a direction, centered on the unconventional Monte Carlo PELE software and on its coupling with machine learning techniques. We also provide new data on combining two recent new techniques, aquaPELE capable of exhaustive water sampling and fragPELE, for fragment growing.
Collapse
Affiliation(s)
- Ignasi Puch-Giner
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
| | - Alexis Molina
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Martí Municoy
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Carles Pérez
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
- Correspondence:
| |
Collapse
|
5
|
García-Marín J, Rodríguez-Puyol D, Vaquero JJ. Insight into the mechanism of molecular recognition between human Integrin-Linked Kinase and Cpd22 and its implication at atomic level. J Comput Aided Mol Des 2022; 36:575-589. [PMID: 35869378 PMCID: PMC9512720 DOI: 10.1007/s10822-022-00466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 10/29/2022]
Abstract
AbsractPseudokinases have received increasing attention over the past decade because of their role in different physiological phenomena. Although pseudokinases lack several active-site residues, thereby hindering their catalytic activity, recent discoveries have shown that these proteins can play a role in intracellular signaling thanks to their non-catalytic functions. Integrin-linked kinase (ILK) was discovered more than two decades ago and was subsequently validated as a promising target for neoplastic diseases. Since then, only a few small-molecule inhibitors have been described, with the V-shaped pyrazole Cpd22 being the most interesting and characterized. However, little is known about its detailed mechanism of action at atomic level. In this study, using a combination of computational chemistry methods including PELE calculations, docking, molecular dynamics and experimental surface plasmon resonance, we were able to prove the direct binding of this molecule to ILK, thus providing the basis of its molecular recognition by the protein and the effect over its architecture. Our breakthroughs show that Cpd22 binding stabilizes the ILK domain by binding to the pseudo-active site in a similar way to the ATP, possibly modulating its scaffolding properties as pseudokinase. Moreover, our results explain the experimental observations obtained during Cpd22 development, thus paving the way to the development of new chemical probes and potential drugs.
Graphical abstract
Collapse
|