1
|
Gallardo-Ignacio J, Santibáñez A, Oropeza-Mariano O, Salazar R, Montiel-Ruiz RM, Cabrera-Hilerio S, Gonzáles-Cortazar M, Cruz-Sosa F, Nicasio-Torres P. Chemical and Biological Characterization of Green and Processed Coffee Beans from Coffea arabica Varieties. Molecules 2023; 28:4685. [PMID: 37375240 PMCID: PMC10305520 DOI: 10.3390/molecules28124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Coffee is one of the most consumed beverages in the world; its production is based mainly on varieties of the Coffea arabica species. Mexico stands out for its specialty and organic coffee. In Guerrero, the production is done by small indigenous community cooperatives that market their product as raw material. Official Mexico Standards stipulate the requirements for its commercialization within the national territory. In this work, the physical, chemical, and biological characterizations of green, medium, and dark roasted beans from C. arabica varieties were carried out. Analysis by HPLC showed higher chlorogenic acid (55 mg/g) and caffeine (1.8 mg/g) contents in the green beans of the Bourbon and Oro Azteca varieties. The caffeine (3.88 mg/g) and melanoidin (97 and 29 mg/g) contents increased according to the level of roasting; a dissimilar effect was found in the chlorogenic acid content (14.5 mg/g). The adequate nutritional content and the sensory evaluation allowed the classification of dark-roasted coffee as premium coffee (84.25 points) and medium-roasted coffee as specialty coffee (86.25 points). The roasted coffees presented antioxidant activity without cytotoxic effects; the presence of CGA and caffeine supports the beneficial effects of drinking coffee. The results obtained will serve as a basis for making decisions on improvements to the coffees analyzed.
Collapse
Affiliation(s)
- Javier Gallardo-Ignacio
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª Sección, Iztapalapa, Mexico City 09310, Mexico;
| | - Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| | | | - Ricardo Salazar
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCyT), CONACYT, Laboratorio de Bromatología y Tecnología de Alimentos Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo de los Bravo 39086, Mexico;
| | - Rosa Mariana Montiel-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| | - Sandra Cabrera-Hilerio
- Laboratorio de Bromatología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio S/N Ciudad Universitaria, Puebla 72000, Mexico;
| | - Manasés Gonzáles-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª Sección, Iztapalapa, Mexico City 09310, Mexico;
| | - Pilar Nicasio-Torres
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (CIBIS-IMSS), Argentina No. 1 Col Centro, Xochitepec 62790, Mexico; (A.S.); (R.M.M.-R.); (M.G.-C.)
| |
Collapse
|
2
|
Mestanza M, Mori-Culqui PL, Chavez SG. Changes of polyphenols and antioxidants of arabica coffee varieties during roasting. Front Nutr 2023; 10:1078701. [PMID: 36776605 PMCID: PMC9909263 DOI: 10.3389/fnut.2023.1078701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Coffee is the most consumed beverage in the world after water. Multiple benefits are attributed to it in human health due to the presence of antioxidant compounds, whose content depends, among other factors, on the processing conditions of the coffee bean. The objective of this study was to determine the kinetics of polyphenols and antioxidants during the roasting of three varieties of arabica coffee. For this, we worked with varieties of coffee, Catimor, Caturra, and Bourbon, from the province of La Convencion, Cuzco, Peru. The samples were roasted in an automatic induction roaster, and 12 samples were taken during roasting (at 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 min of roasting) in triplicate. For green coffee beans, titratable acidity, total soluble solids, moisture and apparent density were determined. The change in polyphenol content was determined using the Folin-Ciocalteu method, and antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis- (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS+) free radical capture technique during roasting. Polyphenol and antioxidant contents increased until minute 5 of roasting and then decreased until minute 20, and in some cases, there were slight increases in the last minute. The model that best described the changes in these bioactive compounds was the cubic model (R 2 0.634 and 0.921), and the best fits were found for the Bourbon variety, whose green grain had more homogeneous characteristics. The changes in the relative abundances of nine phenolic compounds were determined using high-performance liquid chromatography (HPLC). In conclusion, roasting modifies phenolic compounds and antioxidants differently in the coffee varieties studied. The content of some phenols increases, and in other cases, it decreases as the roasting time increases. The roasting process negatively affects the bioactive compounds and increases the fracturability of Arabica coffee beans, elements that should be taken into account at the moment of developing roasting models in the industry.
Collapse
|
3
|
Silva M, Brand A, Novaes F, Rezende C. Cafestol, Kahweol and Their Acylated Derivatives: Antitumor Potential, Pharmacokinetics, and Chemopreventive Profile. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2141776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M.A.E. Silva
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A.L.M. Brand
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F.J.M. Novaes
- Chemistry Department, Federal University of Viçosa, Viçosa, Brazil
| | - C.M Rezende
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Addressing the Neuroprotective Actions of Coffee in Parkinson’s Disease: An Emerging Nutrigenomic Analysis. Antioxidants (Basel) 2022; 11:antiox11081587. [PMID: 36009304 PMCID: PMC9405141 DOI: 10.3390/antiox11081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeine is one of the predominant dietary components and psychostimulants present in coffee, a widely appreciated beverage. Corroborating epidemiological and laboratory evidence have suggested an inverse association between the dietary intakes of coffee and the risk of Parkinson’s Disease (PD). Growing attention has been paid to the impact of coffee consumption and genetic susceptibility to PD pathogenesis. Coffee is believed to play prominent roles in mediating the gene makeup and influencing the onset and progression of PD. The current review documents a current discovery of the coffee × gene interaction for the protective management of PD. The evidence underlying its potent impacts on the adenosine receptors (A2AR), estrogen receptors (ESR), heme oxygenase (HO), toxicant responsive genes, nitric oxide synthase (NOS), cytochrome oxidase (Cox), familial parkinsonism genetic susceptibility loci, bone marrow stromal cell antigen 1 (BST1), glutamate receptor gene and apolipoprotein E (APOE) genotype expressions is outlined. Furthermore, the neuroprotective mechanisms of coffee for the amelioration of PD are elucidated.
Collapse
|
5
|
Galanty A, Niepsuj M, Grudzińska M, Zagrodzki P, Podolak I, Paśko P. In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070806. [PMID: 35890104 PMCID: PMC9319781 DOI: 10.3390/ph15070806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Despite a significant amount of research, the relationship between a diet rich in isoflavones and breast and prostate cancer risk is still ambiguous. The purpose of the current study was to pre-select the potential candidate for functional foods among red, white, crimson, and Persian clover sprouts, cultured for different periods of time (up to 10 days), with respect to the isoflavone content (determined by HPLC-UV-VIS), and to verify their impact on hormone-dependent cancers in vitro. The red clover sprouts were the richest in isoflavones (up to 426.2 mg/100 g dw), whereas the lowest content was observed for the crimson clover. Each species produced isoflavones in different patterns, which refer to the germination time. Hormone-insensitive MDA-MB-231 breast cancer cells were more resistant to the tested extracts than estrogen-dependent MCF7 breast cancer cells. Regarding prostate cancer, androgen-dependent LNCap cells were most susceptible to the tested sprouts, followed by androgen-insensitive, high metastatic PC3, and low metastatic DU145 cells. The observed cytotoxic impact of the tested sprouts is not associated with isoflavone content, as confirmed by chemometric analysis. Furthermore, the sprouts tested revealed a high antioxidant potential, and were characterized by high safety for normal breast and prostate cells.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
- Correspondence:
| | - Monika Niepsuj
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Marta Grudzińska
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (P.Z.); (P.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.N.); (M.G.); (I.P.)
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (P.Z.); (P.P.)
| |
Collapse
|
6
|
The Effect of Pre-Treatment of Arabica Coffee Beans with Cold Atmospheric Plasma, Microwave Radiation, Slow and Fast Freezing on Antioxidant Activity of Aqueous Coffee Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermal and non-thermal technologies used in food processing should be not only effective in terms of decontamination and preservation but also minimize undesirable losses of natural bioactive compounds. Arabica (Coffea arabica) is the most cultivated variety of coffee, making it a valuable source of phytonutrients, including antioxidants. In the present study, green and roasted Arabica coffee beans were treated with slow freezing (SF), fast freezing (FF), microwave radiation (MWR) and cold atmospheric plasma (CAP). Moisture content (MC) of coffee beans and antioxidant activity (AOA) of aqueous extracts were measured. Green coffee showed a decrease in MC after MWR treatment, and roasted coffee showed an increase in MC after freezing. After SF and FF at −19 °C for 24 h, all extract samples showed an increase in AOA by 4.1–17.2%. MWR treatment at 800 W for 60 s was accompanied by an increase in the AOA of green coffee extracts by 5.7%, while the changes in the AOA of roasted coffee extracts were insignificant. Sequential combined treatments of SF + MWR and FF + MWR resulted in an additive/synergistic increase in the AOA of green/roasted coffee extracts, up to +23.0%. After CAP treatment with dielectric barrier discharge (DBD) parameters of 1 μs, 15 kV and 200 Hz for 5 and 15 min, green coffee showed a decrease in the extract AOA by 3.8% and 9.7%, respectively, while the changes in the AOA of roasted coffee extracts were insignificant. A high positive correlation (r = 0.89, p < 0.001) between AOA and MC was revealed. The results obtained indicate that SF, FF, MWR and combined treatments may be applied at the pre-extraction stage of coffee bean preparation in order to increase the yield of antioxidant extractives.
Collapse
|
7
|
Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3254420. [PMID: 35496060 PMCID: PMC9054433 DOI: 10.1155/2022/3254420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men, and coffee is associated with a reduced risk of developing PCa. Therefore, we aim to review possible coffee molecular mechanisms that contribute to PCa prevention. Coffee has an important antioxidant capacity that reduces oxidative stress, leading to a reduced mutation in cells. Beyond direct antioxidant activity, coffee stimulates phase II enzymatic activity, which is related to the detoxification of reactive metabolites. The anti-inflammatory effects of coffee reduce tissue damage related to PCa development. Coffee induces autophagy, regulates the NF-κB pathway, and reduces the expression of iNOS and inflammatory mediators, such as TNF-α, IL-6, IL-8, and CRP. Also, coffee modulates transcriptional factors and pathways. It has been shown that coffee increases testosterone and reduces sex hormone-binding globulin, estrogen, and prostate-specific antigen. Coffee also enhances insulin resistance and glucose metabolism. All these effects may contribute to protection against PCa development.
Collapse
|
8
|
Antibacterial, Antiradical and Antiproliferative Potential of Green, Roasted, and Spent Coffee Extracts. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phytochemical compositions of green coffee beans (GB), roasted coffee (RC), and the solid residue known as spent coffee grounds (SCG) have been associated with beneficial physiological effects. The objective of this study was to analyze the total phenolic compounds, antiradical scavenging ability, antibacterial activity, and antiproliferative activity on cancer cells of aqueous and ethanolic extracts of GB, RC, and SCG samples. The total phenolic content was quantified by Folin–Ciocalteu assay, while the antiradical activity was evaluated by ABTS●+ and DPPH radical assays, antibacterial activity was determined using the microtiter broth dilution method, and antiproliferative activity was evaluated by MTT assay in lung carcinoma cells (A549) and cervical cancer cells (C33A); furthermore, apoptosis and cell cycle arrest were evaluated by flow cytometry. Ethanolic extracts of RC and SCG showed the highest content of total phenols. The SCG ethanolic extract exhibited the lowest inhibitory capacity 50 (IC50) values for free radicals. The SCG extracts also had the lowest MIC values in bacteria. In antiproliferative assays, SCG extracts exhibited a significant decrease in viability in both cell lines, as well as increased apoptotic cells and promoted cell cycle arrest. The higher content of total phenols and antiradical activity of SCG ethanolic extracts was related to their antiproliferative activity in cancer cells, as well as their antibacterial activity against clinical isolates; therefore, the utilization of SCG adds value to an abundant and inexpensive residue.
Collapse
|
9
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022; 175:114265. [PMID: 34815622 PMCID: PMC8601035 DOI: 10.1016/j.indcrop.2021.114265] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 06/01/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Montenegro J, Dos Santos LS, de Souza RGG, Lima LGB, Mattos DS, Viana BPPB, da Fonseca Bastos ACS, Muzzi L, Conte-Júnior CA, Gimba ERP, Freitas-Silva O, Teodoro AJ. Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE). Food Res Int 2020; 140:110014. [PMID: 33648246 DOI: 10.1016/j.foodres.2020.110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Coffee consumption has been investigated as a protective factor against prostate cancer. Coffee may be related to prostate cancer risk reduction due to its phytochemical compounds, such as caffeine, chlorogenic acids, and trigonelline. The roasting process affects the content of the phytochemicals and undesired compounds can be formed. Microwave-assisted extraction is an alternative to conventional extraction techniques since it preserves more bioactive compounds. Therefore, this study aimed to evaluate the phytochemical composition and the putative preventive effects in prostate cancer development of coffee beans submitted to four different coffee-roasting degrees extracted using microwave-assisted extraction. Coffea arabica green beans (1) were roasted into light (2), medium (3) and dark (4) and these four coffee samples were submitted to microwave-assisted extraction. The antioxidant capacity of these samples was evaluated by five different methods. Caffeine, chlorogenic acid and caffeic acid were measured through HPLC. Samples were tested against PC-3 and DU-145 metastatic prostate cancer cell lines regarding their effects on cell viability, cell cycle progression and apoptotic cell death. We found that green and light roasted coffee extracts had the highest antioxidant activity. Caffeine content was not affected by roasting, chlorogenic acid was degraded due to the temperature, and caffeic acid increased in light roasted and decreased in medium and dark roasted. Green and light roasted coffee extracts promoted higher inhibition of cell viability, caused greater cell cycle arrest in S and G2/M and induced apoptosis more compared to medium and dark roasted coffee extracts and the control samples. Coffee extracts were more effective against DU-145 than in PC-3 cells. Our data provide initial evidence that among the four tested samples, the consumption of green and light coffee extracts contributes to inhibit prostate cancer tumor progression features, potentially preventing aspects related to advanced prostate cancer subtypes.
Collapse
Affiliation(s)
- Júlia Montenegro
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Lauriza Silva Dos Santos
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Gonçalves Gusmão de Souza
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Larissa Gabrielly Barbosa Lima
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Daniella Santos Mattos
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional do Câncer, INCa, Rio de Janeiro, RJ, Brazil
| | | | | | - Leda Muzzi
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense, UFF, Niterói, RJ, Brazil
| | - Carlos Adam Conte-Júnior
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense, UFF, Niterói, RJ, Brazil
| | - Etel Rodrigues Pereira Gimba
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional do Câncer, INCa, Rio de Janeiro, RJ, Brazil; Universidade Federal Fluminense, Departamento de Ciências da Natureza, Rio das Ostras, RJ, Brazil
| | - Otniel Freitas-Silva
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil; Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil
| | - Anderson Junger Teodoro
- Laboratório de Alimentos Funcionais, Programa de Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro, UNIRIO, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|