1
|
Shosha MI, El-Ablack FZ, Saad EA. New thiazole derivative as a potential anticancer and topoisomerase II inhibitor. Sci Rep 2025; 15:710. [PMID: 39753588 PMCID: PMC11698983 DOI: 10.1038/s41598-024-81294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7. The interaction of the newly synthesized compound with calf-thymus DNA (CT-DNA) was investigated at pH 7.2 by using UV-Vis absorption measurements, also, molecular docking was carried out to investigate the DNA binding affinity of the proposed compound with the prospective target, DNA (PDB ID: 1d12). Finally, molecular docking was carried out to examine the binding patterns with the prospective target, DNA-Topo II complex (PDB-code: 3QX3). Results indicated that the investigated compound strongly binds to CT-DNA via intercalative mode, and correlated with those obtained from molecular docking and in agreement with that of in vitro cytotoxicity activity.
Collapse
Affiliation(s)
- Mayada I Shosha
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Fawzia Z El-Ablack
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.
| |
Collapse
|
2
|
Arshad N, Shakeel M, Javed A, Perveen F, Saeed A, Ahmed A, Ismail H, Channar PA, Naseer F. Exploration of newly synthesized amantadine-thiourea conjugates for their DNA binding, anti-elastase, and anti-glioma potentials. Int J Biol Macromol 2024; 263:130231. [PMID: 38368975 DOI: 10.1016/j.ijbiomac.2024.130231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan.
| | - Muhammad Shakeel
- Department of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan
| | - Aneela Javed
- Healthcare Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology- NUST, 44000 Islamabad, Pakistan
| | - Fouzia Perveen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology - NUST, 44000 Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Atteeque Ahmed
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry & Biotechnology, University of Gujrat, 50700 Gujrat, Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Fatima Naseer
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology - NUST, 44000 Islamabad, Pakistan
| |
Collapse
|
3
|
Mustafa MN, Channar PA, Ejaz SA, Afzal S, Aziz M, Shamim T, Saeed A, Alsfouk AA, Ujan R, Abbas Q, Hökelek T. Synthesis, DFT and molecular docking of novel (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide as elastase inhibitor. BMC Chem 2023; 17:95. [PMID: 37550776 PMCID: PMC10408170 DOI: 10.1186/s13065-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023] Open
Abstract
A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, β = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.
Collapse
Affiliation(s)
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology Karachi, Karachi, 74800, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Saira Afzal
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh, 11671, Saudi Arabia
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Sakhir, 32038, Bahrain
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University, Beytepe-Ankara, Ankara, 06800, Turkey
| |
Collapse
|
4
|
Arshad N, Parveen U, Channar PA, Saeed A, Saeed WS, Perveen F, Javed A, Ismail H, Mir MI, Ahmed A, Azad B, Khan I. Investigation of Newly Synthesized Bis-Acyl-Thiourea Derivatives of 4-Nitrobenzene-1,2-Diamine for Their DNA Binding, Urease Inhibition, and Anti-Brain-Tumor Activities. Molecules 2023; 28:molecules28062707. [PMID: 36985680 PMCID: PMC10051851 DOI: 10.3390/molecules28062707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Bis-acyl-thiourea derivatives, namely N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N’-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds’ interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound–DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40–120 µM.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (U.P.); (M.I.M.)
- Correspondence: or
| | - Uzma Parveen
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (U.P.); (M.I.M.)
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan;
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.S.); (A.A.)
| | - Waseem Sharaf Saeed
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Fouzia Perveen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (F.P.); (B.A.)
| | - Aneela Javed
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Hammad Ismail
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat 50700, Pakistan;
| | - Muhammad Ismail Mir
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (U.P.); (M.I.M.)
| | - Atteeque Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.S.); (A.A.)
| | - Basit Azad
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (F.P.); (B.A.)
| | - Ishaq Khan
- Texas A&M Health Science Center, Joe H. Reynolds Medical Build, College Station, TX 77843, USA;
| |
Collapse
|
5
|
Recent advances on biologically active coumarin-based hybrid compounds. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Mumtaz S, Iqbal S, Shah M, Hussain R, Rahim F, Rehman W, Khan S, Abid OUR, Rasheed L, Dera AA, Al-ghulikah HA, Kehili S, Elkaeed EB, Alrbyawi H, Alahmdi MI. New Triazinoindole Bearing Benzimidazole/Benzoxazole Hybrids Analogs as Potent Inhibitors of Urease: Synthesis, In Vitro Analysis and Molecular Docking Studies. Molecules 2022; 27:6580. [PMID: 36235116 PMCID: PMC9571547 DOI: 10.3390/molecules27196580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-four analogs based on triazinoindole bearing benzimidazole/benzoxazole moieties (1-25) were synthesized. Utilizing a variety of spectroscopic methods, including 1H-, 13C-NMR, and HREI-MS, the newly afforded compounds (1-25) were analyzed. The synthesized analogs were tested against urease enzyme (in vitro) as compared to the standard thiourea drug. All triazinoindole-based benzimidazole/benzoxazole analogs (1-25) exhibited moderate to excellent inhibition profiles, having IC50 values of 0.20 ± 0.01 to 36.20 ± 0.70 μM when evaluated under the positive control of thiourea as a standard drug. To better understand the structure-activity relationship, the synthesized compounds were split into two groups, "A" and "B." Among category "A" analogs, analogs 8 (bearing tri-hydroxy substitutions at the 2,4,6-position of aryl ring C) and 5 (bearing di-hydroxy substitutions at the 3,4-position of aryl ring C) emerged as the most potent inhibitors of urease enzyme and displayed many times more potency than a standard thiourea drug. Besides that, analog 22 (which holds di-hydroxy substitutions at the 2,3-position of the aryl ring) and analog 23 (bearing ortho-fluoro substitution) showed ten-fold-enhanced inhibitory potential compared to standard thiourea among category "B" analogs. Molecular docking studies on the active analogs of each category were performed; the results obtained revealed that the presence of hydroxy and fluoro-substitutions on different positions of aryl ring C play a pivotal role in binding interactions with the active site of the targeted urease enzyme.
Collapse
Affiliation(s)
- Sundas Mumtaz
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 46000, Pakistan
| | - Mazloom Shah
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22010, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | | | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Hanan A. Al-ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sana Kehili
- Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Hamad Alrbyawi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
7
|
Khalid A, Arshad N, Channar PA, Saeed A, Mir MI, Abbas Q, Ejaz SA, Hökelek T, Saeed A, Tehzeeb A. Structure and surface analyses of a newly synthesized acyl thiourea derivative along with its in silico and in vitro investigations for RNR, DNA binding, urease inhibition and radical scavenging activities. RSC Adv 2022; 12:17194-17207. [PMID: 35755589 PMCID: PMC9185314 DOI: 10.1039/d2ra03160d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 01/18/2023] Open
Abstract
N-((4-Acetylphenyl)carbamothioyl)-2,4-dichlorobenzamide (4) was synthesized by the treatment of 2,4-dichlorobenzoyl chloride with potassium thiocyanate in a 1 : 1 molar ratio in dry acetone to afford the 2,4-dichlorobenzoyl isothiocyanate in situ which on reaction with acetyl aniline furnished (4) in good yield and high purity. The compound was confirmed by FTIR, 1H-NMR, and 13C-NMR and single crystal X-ray diffraction studies. The planar rings were situated at a dihedral angle of 33.32(6)°. The molecules, forming S(6) ring motifs with the intramolecular N-H⋯O hydrogen bonds, were linked through intermolecular C-H⋯O and N-H⋯S hydrogen bonds, enclosing R2 2(8) ring motifs, into infinite double chains along [101]. C-H⋯π and π⋯π interactions with an inter-centroid distance of 3.694 (1) Å helped to consolidate a three-dimensional architecture. Hirshfeld surface (HS) analysis further indicated that the most important contributions for the crystal packing were from H⋯C/C⋯H (20.9%), H⋯H (20.5%), H⋯Cl/Cl⋯H (19.4%), H⋯O/O⋯H (13.8%) and H⋯S/S⋯H (8.9%) interactions. Thus C-H⋯π (ring), π⋯π, van der Waals interactions and hydrogen bonding played the major roles in the crystal packing. The electronic structure and computed DFT (density functional theory) parameters identified the reactivity profile of compound (4). In silico binding of (4) with RNA indicated the formation of a stable protein-ligand complex via hydrogen bonding, while DNA docking studies inferred (4) as a potent groove binder. The experimentally observed hypochromic change (57.2%) in the UV-visible spectrum of (4) in the presence of varying DNA concentrations together with the evaluated binding parameters (K b; 7.9 × 104 M-1, ΔG; -28.42 kJ mol-1) indicated spontaneous interaction of (4) with DNA via groove binding and hence supported the findings obtained through docking analysis. This compound also showed excellent urease inhibition activity in both in silico and vitro studies with an IC50 value of 0.0389 ± 0.0017 μM. However, the radical scavenging efficiency of (4) was found to be modest in comparison to vitamin C.
Collapse
Affiliation(s)
- Aqsa Khalid
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University 44000 Islamabad Pakistan
| | | | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Muhammad Ismail Mir
- Department of Chemistry, Allama Iqbal Open University 44000 Islamabad Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus 32038 Bahrain
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Pakistan
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University Beytepe-Ankara 06800 Turkey
| | - Amna Saeed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Pakistan
| | - Arfa Tehzeeb
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| |
Collapse
|
8
|
Synthesis of tri-functional allyl-endcapped triphenylmethane crosslinker and evaluation of crosslinking effect on properties of high-density polyethylene. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Anand A, Sindogi K, Dixit SR, Shetty RP, Pujar GV, Kulkarni MV, Guru Row TN. Comparative Investigation on the Crystal Structures, Hirshfeld Surface Analysis, Antitubercular Assays, and Molecular Docking of Regioisomeric 1,2,3‐Triazoles. ChemistrySelect 2022. [DOI: 10.1002/slct.202104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ashish Anand
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru 560012, Karnataka India
| | - Kishorkumar Sindogi
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru 560012, Karnataka India
| | - Sheshagiri R. Dixit
- Department of Pharmaceutical Chemistry JSS College of Pharmacy JSS Academy of Higher Education and Research Mysuru 570015, Karnataka India
| | - Richa P. Shetty
- Department of Pharmaceutical Chemistry JSS College of Pharmacy JSS Academy of Higher Education and Research Mysuru 570015, Karnataka India
| | - Gurubasavaraj V. Pujar
- Department of Pharmaceutical Chemistry JSS College of Pharmacy JSS Academy of Higher Education and Research Mysuru 570015, Karnataka India
| | - Manohar V. Kulkarni
- Department of Studies in Chemistry Karnatak University Pavate Nagar, Dharwad 580003, Karnataka India
| | - Tayur N. Guru Row
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru 560012, Karnataka India
| |
Collapse
|
10
|
Ahmed A, Saeed A, Ejaz SA, Aziz M, Hashmi MZ, Channar PA, Abbas Q, Raza H, Shafiq Z, El-Seedi HR. Novel adamantyl clubbed iminothiazolidinones as promising elastase inhibitors: design, synthesis, molecular docking, ADMET and DFT studies. RSC Adv 2022; 12:11974-11991. [PMID: 35481107 PMCID: PMC9016748 DOI: 10.1039/d1ra09318e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Porcine Pancreatic Elastase (PPE) is a serine protease that is homologous to trypsin and chymotrypsin that are involved in various pathologies like inflammatory disease, Chronic Obstructive Pulmonary Disease (COPD), acute respiratory distress syndrome, cystic fibrosis, and atherosclerosis. PPE if remained uninhibited would lead to digestion of important connective tissue. We developed new structurally diverse series of adamantyl-iminothiazolidinone hybrids to divulge elastase inhibition assay. To identify potent derivatives, in silico screening was conducted and in vitro studies disclosed that the compounds 5a, 5f, 5g, and 5h showed excellent binding energies and low IC50 values. In silico studies including molecular docking, DFT studies (using the B3LYP/SVP basis set in the gas phase) drug likeness scores and molecular dynamic simulation studies were conducted to evaluate protein–ligand interactions and to determine the stability of top ranked conformation. In silico studies further supported the results of in vitro experiments and suggest these derivatives as novel inhibitors of elastase enzyme. Structurally diverse adamantyl-iminothiazolidinone conjugates were synthesized, evaluated for elastase inhibition, and subjected to in silico ADMET prediction. The inhibition studies revealed compounds 5a, 5f, 5g, and 5h to show significant activity.![]()
Collapse
Affiliation(s)
- Atteeque Ahmed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan +92-51-9064-2241 +92-51-9064-2128
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan +92-51-9064-2241 +92-51-9064-2128
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | | | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan +92-51-9064-2241 +92-51-9064-2128.,Department of Basic Sciences, Mathematics and Humanities, Dawood University of Engineering and Technology Karachi 74800 Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain Sakhir Kingdom of Bahrain
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University 56 Gongjudehak-Ro Gongju Chungnam 314-701 Republic of Korea
| | - Zahid Shafiq
- Department of Chemistry, Bahauddin Zakariya University Bosan Road Multan Pakistan
| | - Hesham R El-Seedi
- School of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University Zhenjiang China.,Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
| |
Collapse
|
11
|
Arshad N, Mir MI, Perveen F, Javed A, Javaid M, Saeed A, Channar PA, Farooqi SI, Alkahtani S, Anwar J. Investigations on Anticancer Potentials by DNA Binding and Cytotoxicity Studies for Newly Synthesized and Characterized Imidazolidine and Thiazolidine-Based Isatin Derivatives. Molecules 2022; 27:354. [PMID: 35056668 PMCID: PMC8778244 DOI: 10.3390/molecules27020354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023] Open
Abstract
Imidazolidine and thiazolidine-based isatin derivatives (IST-01-04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound-DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Muhammad Ismail Mir
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Fouzia Perveen
- Research Center for Modeling and Simulations, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Aneela Javed
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Memona Javaid
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Shahid Iqbal Farooqi
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
| | - Jamshed Anwar
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK;
| |
Collapse
|
12
|
Wu Q, Zheng Z, Ye W, Guo Q, Liao T, Yang D, Zhao C, Liao W, Chai H, Zhou Z. Synthesis, crystal and molecular structure, vibrational spectroscopic, DFT and molecular docking of 4-(2-chlorobenzyl)-1-(4‑hydroxy-3- ((4-hydroxypiperidin-1-yl) methyl-5-methoxyphenyl)-[1,2,4] triazolo [4,3-a] quinazolin-5(4H)-one. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Isomeric nitro substituted symmetrical benzamides: Crystal Structures, Hirshfeld surface analysis, 3D energy frameworks, DNA binding and cell line studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Polo-Cuadrado E, Ferrer K, Osorio E, Brito I, Cisterna J, Gutiérrez M. Crystal structure, Hirshfeld surface analysis and DFT studies of N-(4-acetylphenyl)quinoline-3-carboxamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ujan R, Arshad N, Perveen F, Abbas Q, Channar PA, Saeed A, Farooqi SI, Channar KA, Hökelek T, Flörke U. Single crystal, Hirshfeld surface, DFT analyses of (E)‐2‐(2‐chloro‐6‐fluorobenzylidene)hydrazinecarbothioamide: Elastase inhibition and DNA binding studies. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry University of Sindh Jamshoro Pakistan
| | - Nasima Arshad
- Department of Chemistry Allama Iqbal Open University Islamabad Pakistan
| | - Fouzia Perveen
- Research Center for Modeling and Simulations National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Qamar Abbas
- College of Science, Department of Biology University of Bahrain Zallaq Bahrain
| | | | - Aamer Saeed
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Shahid I. Farooqi
- Department of Chemistry Allama Iqbal Open University Islamabad Pakistan
| | - Kashif Ali Channar
- Department of Oral and Maxillofacial Surgery Liaquat University of Medical and Health Sciences Jamshoro Pakistan
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering Hacettepe University Ankara Turkey
| | - Ulrich Flörke
- Department Chemie, Fakultät für Naturwissenschaften Universität Paderborn Paderborn Germany
| |
Collapse
|
16
|
Arshad N, Abbas N, Perveen F, Mirza B, Almuhaini AM, Alkahtani S. Molecular docking analysis and spectroscopic investigations of zinc(II), nickel(II) N-phthaloyl-β-alanine complexes for DNA binding: Evaluation of antibacterial and antitumor activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Kumar CU, Anand PS, Sethukumar A, Krishnasamy K, Senthan S, Manikandan G, Prakasam BA. Single crystal X-ray structural and Hirshfeld surface analysis dataset for some isobutyl-1,2,6-triaryl-4-(arylamino)-1,2,5,6-tetrahydropyridine-3-carboxylates. Data Brief 2021; 35:106850. [PMID: 33816724 PMCID: PMC8010621 DOI: 10.1016/j.dib.2021.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/26/2022] Open
Abstract
This article reports the single-crystal X-ray diffraction dataset of some isobutyl-1,2,6-triaryl-4-(arylamino)-1,2,5,6-tetrahydropyridine-3-carboxylate (1-3) derivatives with Hirshfeld surface analysis. Pictorial representations of intramolecular hydrogen bonding in 1-3 with the characteristics of Resonance Assisted Hydrogen Bonding (RAHB) are presented. The data corresponding to the Hirshfeld surface analysis is given.
Collapse
Affiliation(s)
- Chandran Udhaya Kumar
- Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India
| | | | - Annamalai Sethukumar
- Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India
| | - Kuppusamy Krishnasamy
- Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India
| | - Sivakolunthu Senthan
- Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India
| | - Govindhasamy Manikandan
- Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India
- Department of Chemistry, Government Arts College (Autonomous), Kumbakonam 612 002, India
| | - Balasubramaniam Arul Prakasam
- Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India
- Department of Chemistry, Government Arts College (Autonomous), Kumbakonam 612 002, India
| |
Collapse
|
18
|
Synthesis, X-ray, Hirshfeld surface analysis, exploration of DNA binding, urease enzyme inhibition and anticancer activities of novel adamantane-naphthyl thiourea conjugate. Bioorg Chem 2021; 109:104707. [PMID: 33639362 DOI: 10.1016/j.bioorg.2021.104707] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
1-(adamantane-1-carbonyl-3-(1-naphthyl)) thiourea (C22H24N2OS (4), was synthesized by the reaction of freshly prepared adamantane-1-carbonyl chloride from corresponding acid (3) with ammonium thiocyanate in 1:1 M ratio in dry acetone to afford the adamantane-1-carbonyl isothiocyanate (2) in situ followed by treatment with 1-naphthyl amine (3). The structure was established by elemental analyses, FTIR, 1H, 13C NMR and mass spectroscopy. The molecular and crystal structure were determined by single crystal X-ray analysis. It belongs to triclinic system P - 1 space group with a = 6.7832(5) Å, b = 11.1810(8) Å, c = 13.6660(10) Å, α = 105.941(6)°, β = 103.730(6)°, γ = 104.562(6)°, Z = 2, V = 910.82(11) Å3. The naphthyl group is almost planar. In the crystal structure, intermolecular CH···O hydrogen bonds link the molecules into centrosymmetric dimers, enclosing R22(14) ring motifs, while the intramolecular NH···O hydrogen bonds enclose S(6) ring motifs, in which they may be effective in the stabilization of the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H … H (59.3%), H … C/C … H (19.8%) and H … S/S … H (10.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. DFT, molecular docking and urease inhibition studies revealed stability and electron withdrawing nature of 4 as compared to DNA base pairs and residues of urease. The DNA binding results from docking, UV- visible spectroscopy, and viscosity studies indicated significant binding of 4 with the DNA via intercalation and groove binding. Further investigation of the compound was done on hepatocellular carcinoma; Huh-7 cell line as well as normal human embryonic kidney; Hek-293 cell line. The compound showed significant cytotoxic activity against Huh-7 cells in comparison to normal Hek-293 cells indicating selective cytotoxicity towards cancer cells.
Collapse
|
19
|
Chaudhry F, Shahid W, Al-Rashida M, Ashraf M, Ali Munawar M, Ain Khan M. Synthesis of imidazole-pyrazole conjugates bearing aryl spacer and exploring their enzyme inhibition potentials. Bioorg Chem 2021; 108:104686. [PMID: 33581666 DOI: 10.1016/j.bioorg.2021.104686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Developing improved enzyme inhibitors is an effective therapy to counter various diseases. Aiming to build up biologically active templates, a new series of bis-diazoles conjugated with an aryl linker was designed and prepared through a convenient synthetic approach. Synthesized derivatives 6(a-m), having different substitutions at the 2nd position of the imidazole nucleus, depict the scope of present study. These compounds were characterized through spectroscopic methods and further examined for their in vitro enzyme inhibitory potentials against two selected enzymes: α-glucosidase and lipoxygenase (LOX). Overall, this series was found to be effective against α-glucosidase and moderately active against LOX enzyme. Compound 6k was the most potent α-glucosidase inhibitor with IC50 = 54.25 ± 0.67 µM as compared to reference drug acarbose (IC50 = 375.82 ± 1.76 µM). The docked conformation revealed the involvement of substituent's heteroatoms with amino acid residue Gly280 through hydrogen bonding. The most active LOX inhibitor was 6a with IC50 = 41.75 ± 0.04 µM as compared to standard baicalein (IC50 = 22.4 ± 1.3 µM). Docking model of 6a suggested the strong interaction of imidazole's nitrogen with iron atom of the active pocket of enzyme. Other features like lipophilicity, bulkiness of compounds, pi-pi interactions and/or pi-alkyl interactions also affected the inhibiting potentials of all prepared scaffolds.
Collapse
Affiliation(s)
- Faryal Chaudhry
- Institute of the Chemistry, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan; Department of Chemistry, Kinnaird College for Women Lahore, 93-Jail Road, Lahore 54000, Pakistan.
| | - Wardah Shahid
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Munawar Ali Munawar
- Institute of the Chemistry, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan.
| | - Misbahul Ain Khan
- Institute of the Chemistry, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan; Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|