1
|
Meenakshi GA, Sakthinathan S, Chiu TW. Fabrication of Carbon Nanofiber Incorporated with CuWO 4 for Sensitive Electrochemical Detection of 4-Nitrotoluene in Water Samples. SENSORS (BASEL, SWITZERLAND) 2023; 23:5668. [PMID: 37420832 DOI: 10.3390/s23125668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
In the current work, copper tungsten oxide (CuWO4) nanoparticles are incorporated with carbon nanofiber (CNF) to form CNF/CuWO4 nanocomposite through a facile hydrothermal method. The prepared CNF/CuWO4 composite was applied to the electrochemical detection of hazardous organic pollutants of 4-nitrotoluene (4-NT). The well-defined CNF/CuWO4 nanocomposite is used as a modifier of glassy carbon electrode (GCE) to form CuWO4/CNF/GCE electrode for the detection of 4-NT. The physicochemical properties of CNF, CuWO4, and CNF/CuWO4 nanocomposite were examined by various characterization techniques, such as X-ray diffraction studies, field emission scanning electron microscopy, EDX-energy dispersive X-ray microanalysis, and high-resolution transmission electron microscopy. The electrochemical detection of 4-NT was evaluated using cyclic voltammetry (CV) the differential pulse voltammetry detection technique (DPV). The aforementioned CNF, CuWO4, and CNF/CuWO4 materials have better crystallinity with porous nature. The prepared CNF/CuWO4 nanocomposite has better electrocatalytic ability compared to other materials such as CNF, and CuWO4. The CuWO4/CNF/GCE electrode exhibited remarkable sensitivity of 7.258 μA μM-1 cm-2, a low limit of detection of 86.16 nM, and a long linear range of 0.2-100 μM. The CuWO4/CNF/GCE electrode exhibited distinguished selectivity, acceptable stability of about 90%, and well reproducibility. Meanwhile, the GCE/CNF/CuWO4 electrode has been applied to real sample analysis with better recovery results of 91.51 to 97.10%.
Collapse
Affiliation(s)
- Ganesh Abinaya Meenakshi
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
2
|
Yousefi R, Asgari S, Banitalebi Dehkordi A, Mohammadi Ziarani G, Badiei A, Mohajer F, Varma RS, Iravani S. MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. ENVIRONMENTAL RESEARCH 2023; 226:115664. [PMID: 36913998 DOI: 10.1016/j.envres.2023.115664] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
3
|
Zinc oxide-copper sulfide semiconductor nano-heterostructure for low-level electrochemical detection of 4-nitrotoluene. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Sangamithirai D, Ramanathan S. Electrochemical sensing platform for the detection of nitroaromatics using g-C3N4/V2O5 nanocomposites modified glassy carbon electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Sangubotla R, Kim J. Fluorometric biosensor based on boronic acid-functionalized ZnO-derived nanostructures for the detection of N-acetylneuraminic acid and its in vivo bio-imaging studies. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Subramani IG, Perumal V, Gopinath SCB, Fhan KS, Mohamed NM. Organic-Inorganic Hybrid Nanoflower Production and Analytical Utilization: Fundamental to Cutting-Edge Technologies. Crit Rev Anal Chem 2021; 52:1488-1510. [PMID: 33691533 DOI: 10.1080/10408347.2021.1889962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past decade, science has experienced a growing rise in nanotechnology with ground-breaking contributions. Through various laborious technologies, nanomaterials with different architectures from 0 D to 3 D have been synthesized. However, the 3 D flower-like organic-inorganic hybrid nanomaterial with the most direct one-pot green synthesis method has attracted widespread attention and instantly become research hotspot since its first allusion in 2012. Mild synthesis procedure, high surface-to-volume ratio, enhanced enzymatic activity and stability are the main factor for its rapid development. However, its lower mechanical strength, difficulties in recovery from the reaction system, lower loading capacity, poor reusability and accessibility of enzymes are fatal, which hinders its wide application in industry. This review first discusses the selection of non-enzymatic biomolecules for the synthesis of hybrid nanoflowers followed by the innovative advancements made in organic-inorganic hybrid nanoflowers to overcome aforementioned issues and to enhance their extensive downstream applications in transduction technologies. Besides, the role of hybrid nanoflower has been successfully utilized in many fields including, water remediation, biocatalyst, pollutant adsorption and decolourization, nanoreactor, biosensing, cellular uptake and others, accompanied with several quantification technologies, such as ELISA, electrochemical, surface plasmon resonance (SPR), colorimetric, and fluorescence were comprehensively reviewed.
Collapse
Affiliation(s)
- Indra Gandi Subramani
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Khor Shing Fhan
- Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Norani Muti Mohamed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
7
|
Salek Maghsoudi A, Hassani S, Mirnia K, Abdollahi M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine 2021; 16:803-832. [PMID: 33568907 PMCID: PMC7870343 DOI: 10.2147/ijn.s294417] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Heavy metals cause considerable environmental pollution due to their extent and non-degradability in the environment. Analysis and trace levels of arsenic, lead, mercury, and cadmium as the most toxic heavy metals show that they can cause various hazards in humans' health. To achieve rapid, high-sensitivity methods for analyzing ultra-trace amounts of heavy metals in different environmental and biological samples, novel biosensors have been designed with the participation of strategies applied in nanotechnology. This review attempted to investigate the novel, sensitive, efficient, cost-benefit, point of care, and user-friendly biosensors designed to detect these heavy metals based on functional mechanisms. The study's search strategies included examining the primary databases from 2015 onwards and various keywords focusing on heavy metal biosensors' performance and toxicity mechanisms. The use of aptamers and whole cells as two important bio-functional nanomaterials is remarkable in heavy metal diagnostic biosensors' bioreceptor design. The application of hybridized nanomaterials containing a specific physicochemical function in the presence of a suitable transducer can improve the sensing performance to achieve an integrated detection system. Our study showed that in addition to both labeled and label-free detection strategies, a wide range of nanoparticles and nanocomposites were used to modify the biosensor surface platform in the detection of heavy metals. The detection limit and linear dynamic range as an essential characteristic of superior biosensors for the primary toxic metals are studied. Furthermore, the perspectives and challenges facing the design of heavy metal biosensors are outlined. The development of novel biosensors and the application of nanotechnology, especially in real samples, face challenges such as the capability to simultaneously detect multiple heavy metals, the interference process in complex matrices, the efficiency and stability of nanomaterials implemented in various laboratory conditions.
Collapse
Affiliation(s)
- Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sortino AL, Censabella M, Munzi G, Boninelli S, Privitera V, Ruffino F. Laser-Based Synthesis of Au Nanoparticles for Optical Sensing of Glyphosate: A Preliminary Study. MICROMACHINES 2020; 11:E989. [PMID: 33142922 PMCID: PMC7693313 DOI: 10.3390/mi11110989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
Nowadays, gold nanoparticles Au nanoparticles (AuNPs) capture great interest due to their chemical stability, optical properties and biocompatibility. The success of technologies based on the use of AuNPs implies the development of simple synthesis methods allowing, also, the fine control over their properties (shape, sizes, structure). Here, we present the AuNPs fabrication by nanosecond pulsed laser ablation in citrate-solution, that has the advantage of being a simple, economic and eco-sustainable method to fabricate colloidal solutions of NPs. We characterized the stability and the absorbance of the solutions by Ultraviolet-Visible (UV-Vis) spectroscopy and the morphology of the AuNPs by Transmission Electron Microscopy. In addition, we used the AuNPs solutions as colorimetric sensor to detect the amount of glyphosate in liquid. Indeed, glyphosate is one of the most widely used herbicides which intensive use represents a risk to human health. The glyphosate presence in the colloidal AuNPs solutions determines the aggregation of the AuNPs causing the change in the color of the solution. The variation of the optical properties of the colloidal solutions versus the concentration of glyphosate is studied.
Collapse
Affiliation(s)
- Antonella Laura Sortino
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
| | - Maria Censabella
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, via S. Sofia 64, 95123 Catania, Italy;
| | - Gabriella Munzi
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Simona Boninelli
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
| | - Vittorio Privitera
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
| | - Francesco Ruffino
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, via S. Sofia 64, 95123 Catania, Italy;
| |
Collapse
|