1
|
Gallo J, Villasante A. Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment. Int J Mol Sci 2023; 24:15484. [PMID: 37895165 PMCID: PMC10607206 DOI: 10.3390/ijms242015484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.
Collapse
Affiliation(s)
- Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal;
| | - Aranzazu Villasante
- Nanobioengineering Lab, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Lu Z, Acter S, Teo BM, Bishop AI, Tabor RF, Vidallon MLP. Mesoporous, anisotropic nanostructures from bioinspired polymeric catecholamine neurotransmitters and their potential application as photoacoustic imaging agents. J Mater Chem B 2022; 10:9662-9670. [PMID: 36382405 DOI: 10.1039/d2tb01756c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesoporous polydopamine (PDA) nanobowls, which can be prepared using Pluronic® F-127, ammonia, and 1,3,5-trimethylbenzene (TMB), are one of the most studied anisotropic nanoparticle systems. However, only limited reports on polymerised analogues polynorepinephrine (PNE) and polyepinephrine (PEP) exist. Herein, we present modifications to a one-pot, soft template method, originally applied to make PDA nanobowls, to fabricate new shape-anisotropic nanoparticles (mesoporous nanospheres or "nano-golf balls" and nanobowls) using PNE and PEP for the first time. These modifications include the use of different oil phases (TMB, toluene and o-xylene) and ammonia concentrations to induce anisotropic growth of PDA, PNE, and PEP particles. Moreover, this work features the application of oddly shaped PDA, PNE, and PEP nanoparticles as intravascular photoacoustic imaging enhancers in Intralipid®-India ink-based tissue-mimicking phantoms. Photoacoustic imaging experiments showed that mesoporous nanobowls exhibit stronger enhancement, in comparison to their mesoporous nano-golf ball and nanoaggregate counterparts. The photoacoustic enhancement also followed the general trend PDA > PNE > PEP due to the differences in the rates of polymerisation of the monomers and the optical absorption of the resulting polymers. Lastly, about two- to four-fold enhancement in photoacoustic signals was observed for the mesoporous nanostructures, when compared to smooth nanospheres and their nano-aggregates. These results suggest that shape manipulation can aid in overcoming the inherently lower performance of PNE and PEP as photoacoustic imaging agents, compared to PDA. Since nanomaterials with mesoporous and anisotropic morphologies have significant, unexplored potential with emerging applications, these results set the groundwork for future studies on photoacoustically active oddly shaped PNE- and PEP-based nanosystems.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Shahinur Acter
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.
| | | |
Collapse
|
3
|
Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:070901. [PMID: 36451698 PMCID: PMC9307281 DOI: 10.1117/1.jbo.27.7.070901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Significance Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
Collapse
Affiliation(s)
- Xie Hui
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Mohammad O. A. Malik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
4
|
Vidallon MLP, Salimova E, Crawford SA, Teo BM, Tabor RF, Bishop AI. Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. ULTRASONICS SONOCHEMISTRY 2022; 86:106041. [PMID: 35617883 PMCID: PMC9136156 DOI: 10.1016/j.ultsonch.2022.106041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100-600 nm and 1-6 µm) and unimodal (200-600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®-India ink media, mimicking the optical scattering and absorbanceof various tissuetypes. From these measurements, it was observed that PDA/PFC droplets with bimodal size distributions can enhance the photoacoustic signal of blood-mimicking phantom by up to five folds in various tissue-mimicking phantoms with absorption coefficients from 0.1 to 1.0 cm-1. Furthermore, using the information from enhanced photoacoustic images at 750 nm, the ultimate imaging depth was explored for polydopamine-shelled, perfluorohexane (PDA/PFH) emulsion droplets by photon trajectory simulations in 3D using a Monte Carlo approach. Based on these simulations, maximal tissue imaging depths for PDA/PFH emulsion droplets range from 10 to 40 mm, depending on the tissue type. These results demonstrate for the first time that ultrasonically fabricated PDA/PFC emulsion droplets have great potential as photoacoustic imaging agents that can be complemented with other reported characteristics of PDA/PFC emulsion droplets for extended applications in theranostics and other imaging modalities.
Collapse
Affiliation(s)
| | - Ekaterina Salimova
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Wang Y, Gou K, Guo X, Ke J, Li S, Li H. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to overcome biological barriers. Acta Biomater 2021; 123:72-92. [PMID: 33454385 DOI: 10.1016/j.actbio.2021.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) with remarkable structural features have been proven to be an excellent platform for the delivery of therapeutic molecules. Biological barriers in various forms (e.g., mucosal barrier, cellular barrier, gastrointestinal barrier, blood-brain barrier, and blood-tumor barrier) present substantial obstacles for MSNs. The physicochemical parameters of MSNs are known to be effective and tunable not only for load and release of therapeutic molecules but also for their biological responsiveness that is beneficial for cells and tissues. This review innovatively provides a description of how and why physicochemical properties (e.g., particle size, morphology, surface charge, hydrophilic-hydrophobic property, and surface modification) of MSNs influence their ability to cross the biological barriers prior to reaching targeted sites. First, the structural and physiological features of biological barriers are outlined. Next, the recent progresses in the critical physicochemical parameters of MSNs are highlighted from physicochemical and biological aspects. Surface modification, as an important strategy for achieving rapid transport, is also reviewed with special attention to the latest findings of bioactive groups and molecular mechanisms. Furthermore, advanced designs of multifunction intelligent MSNs to surmount the blood-tumor barrier and to actively target tumor sites are demonstrated in detail. Lastly, the biodegradability and toxicity of MSNs are evaluated. With perspectives for their potential application and biosafety, the clues in summary might lead to drug delivery with high efficiency and provide useful knowledge for rational design of nanomaterials.
Collapse
|
6
|
Wang M, Li B, Du Y, Bu H, Tang Y, Huang Q. Fluorescence imaging-guided cancer photothermal therapy using polydopamine and graphene quantum dot-capped Prussian blue nanocubes. RSC Adv 2021; 11:8420-8429. [PMID: 35423381 PMCID: PMC8695181 DOI: 10.1039/d0ra10491d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, imaging-guided photothermal tumor ablation has attracted intense research interest as one of the most exciting strategies for cancer treatment. Herein, we prepared polydopamine and graphene quantum dot-capped Prussian blue nanocubes (PB@PDA@GQDs, PBPGs) with high photothermal conversion efficiency and excellent fluorescence performance for imaging-guided cancer treatment. Transmission electron microscopy (TEM), UV-vis absorption spectroscopy (UV-vis), fluorescence spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to characterize their morphology and structures. The photothermal conversion efficiency and therapeutic effect were evaluated in vitro and in vivo. Results revealed that this nanoagent had excellent biocompatibility and enhanced the photothermal effect compared to blue nanocubes (PBs) and polydopamine-capped Prussian blue nanocubes (PB@PDA, PBPs). Therefore, our study may open a new path for the production of PB-based nanocomposites as theranostic nanoagents for imaging-guided photothermal cancer treatment.
Collapse
Affiliation(s)
- Meng Wang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Baolong Li
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Yu Du
- Medical Technology School, Xuzhou Medical University Xuzhou Jiangsu 221000 China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
- Department of Physiology, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Yanyan Tang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Qingli Huang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| |
Collapse
|
7
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|