1
|
Ahmed MT, Roy D, Roman AA, Islam S, Ahmed F. A first principles study of RbSnCl 3 perovskite toward NH 3, SO 2, and NO gas sensing. NANOSCALE ADVANCES 2024; 6:1218-1226. [PMID: 38356625 PMCID: PMC10863711 DOI: 10.1039/d3na00927k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
The sensitivity of a RbSnCl3 perovskite 2D layer toward NH3, SO2, and NO toxic gases has been studied via DFT analysis. The tri-atomic layer of RbSnCl3 possessed a tetragonal symmetry with a band gap of 1.433 eV. The adsorption energies of RbSnCl3 for NH3, SO2 and NO are -0.09, -0.43, and -0.56 eV respectively with a recovery time ranging from 3.4 × 10-8 to 3.5 ms. RbSnCl3 is highly sensitive toward SO2 and NO compared to NH3. The adsorption of SO2 and NO results in a significant structural deformation and a semiconductor-to-metal transition of RbSnCl3 perovskite. A high absorption coefficient (>103 cm-1), excessive optical conductivity (>1014 s-1), and a very low reflectivity (<3%) make RbSnCl3 a potential candidate for numerous optoelectronic applications. A significant shift in optical responses is observed through SO2 and NO adsorption, which can enable identification of the adsorbed gases. The studied characteristics signify that RbSnCl3 can be a potential candidate for SO2 and NO detection.
Collapse
Affiliation(s)
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology Bangladesh
| | - Abdullah Al Roman
- Department of Physics, Jashore University of Science and Technology Bangladesh
| | - Shariful Islam
- Department of Physics, Jahangirnagar University Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University Bangladesh
| |
Collapse
|
2
|
Lin L, Xue C, Li X, Tao H, Su L. Adsorption and Sensing of NO 2, SO 2, and NH 3 on a Janus MoSeTe Monolayer Decorated with Transition Metals (Fe, Co, and Ni): A First-Principles Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12662-12670. [PMID: 37652891 DOI: 10.1021/acs.langmuir.3c01320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This paper reports the adsorption of toxic gases (NO2, SO2, and NH3) on a MoSeTe structure based on first principles. It was found that the gas (NO2, SO2, and NH3) adsorption on a pure MoSeTe monolayer was weak; however, the adsorption performance of these gas molecules on transition-metal-atom-supported MoSeTe monolayers (TM-MoSeTe) was better than that on pure MoSeTe monolayers. In addition, there was more charge transfer between gas molecules and TM-MoSeTe. By comparing the adsorption energy and charge transfer values, the trend of adsorption energy and charge transfer in the adsorption of NO2 and SO2 was determined to be Fe-MoSeTe > Co-MoSeTe > Ni-MoSeTe. For the adsorption of NH3, the effect trend was as follows: Co-MoSeTe > Ni-MoSeTe > Fe-MoSeTe. Finally, by comparing their response times, the better gas sensor was selected. The Ni-MoSeTe system is suitable for NO2 gas sensors, and the Fe-MoSeTe and Co-MoSeTe systems are suitable for SO2 gas sensors. The Fe-MoSeTe, Co-MoSeTe, and Ni-MoSeTe systems are all suitable for NH3 gas sensors. Janus transition-metal dichalcogenides have the potential to be used as gas-sensing and scavenging materials.
Collapse
Affiliation(s)
- Long Lin
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
- School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chaowen Xue
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
- School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xinchun Li
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
- School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hualong Tao
- Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
| | - Linlin Su
- Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
| |
Collapse
|
3
|
Singh PDD, Murthy Z, Kumar Kailasa S. Metal nitrides nanostructures: Properties, synthesis and conceptualization in analytical methods developments for chemical analysis and separation, and in energy storage applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Reddeppa M, Nam DJ, Bak NH, Pasupuleti KS, Woo H, Kim SG, Oh JE, Kim MD. Proliferation of the Light and Gas Interaction with GaN Nanorods Grown on a V-Grooved Si(111) Substrate for UV Photodetector and NO 2 Gas Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30146-30154. [PMID: 34143594 DOI: 10.1021/acsami.1c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although excellent milestones of III-nitrides in optoelectronic devices have been achieved, the focus on the optimization of their geometrical structure for multiple applications is very rare. To address this issue, we exclusively designed a prototype device to enhance the photoconversion efficiency and gas interaction capabilities of GaN nanorods (NRs) grown on a V-grooved Si(100) substrate with Si(111) facets for photodetector and gas sensor applications. Photoluminescence studies have demonstrated an increased surface-to-volume ratio and light trapping for GaN NRs grown on V-grooved Si(111). GaN NRs on V-grooved Si(100) with Si(111) facets exhibited high photodetection performance in terms of photoresponsivity (217 mA/cm2), detectivity (3 × 1013 Jones), and external quantum efficiency (2.73 × 105%) compared to GaN NRs grown on plain Si(111). Owing to the robust interconnection between NRs and a high surface-to-volume ratio, the GaN NRs grown on V-grooved Si(100) with Si(111) facets probed for NO2 detection with the assistance of photonic energy. The photo-assisted sensing makes it possible to detect NO2 gas at the ppb level at room temperature, resulting in significant power reduction. The device showed high selectivity to NO2 against other target gases, such as NO, H2S, H2, NH3, and CO. The device showed excellent long-term stability at room temperature; the humidity effect on the device performance was also examined. The excellent device performance was due to the following: (i) benefited from the V-grooved Si structure, GaN NRs significantly trapped the incident light, which promoted high photocurrent conversion efficiency and (ii) GaN NRs grown on V-grooved Si(100) with Si(111) facets increased the surface-to-volume ratio and thus improved the gas interaction with a better diffusion ratio and high light trapping, which resulted in increased response/recovery times. These results represent an important forward step in prototype devices for multiple applications in materials research.
Collapse
Affiliation(s)
- Maddaka Reddeppa
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Dong-Jin Nam
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Na-Hyun Bak
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | | | | | - Song-Gang Kim
- Department of Information and Communications, Joongbu University, 305 Donghen-ro, Goyang, Kyunggi-do 10279, Republic of Korea
| | - Jae-Eung Oh
- School of Electrical and Computer Engineering, Hangyang University, Ansan 15588, Republic of Korea
| | - Moon-Deock Kim
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|