1
|
Laylani LAASS, Al-dolaimy F, Altharawi A, Sulaman GM, Mustafa MA, Alkhafaji AT, Alkhatami AG. Electrochemical DNA-nano biosensor for the detection of Goserelin as anticancer drug using modified pencil graphite electrode. Front Oncol 2024; 14:1321557. [PMID: 38751811 PMCID: PMC11094254 DOI: 10.3389/fonc.2024.1321557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
Goserelin is an effective anticancer drug, but naturally causes several side effects. Hence the determination of this drug in biological samples, plays a key role in evaluating its effects and side effects. The current studies have concentrated on monitoring Goserelin using an easy and quick DNA biosensor for the first time. In this study, copper(II) oxide nanoparticles were created upon the surface of multiwalled carbon nanotubes (CuO/MWCNTs) as a conducting mediator. The modified pencil graphite electrode (ds-DNA/PA/CuO/MWCNTs/PGE) has been modified with the help of polyaniline (PA), ds-DNA, and CuO/MWCNTs nanocomposite. Additionally, the issue with the bio-electroanalytical guanine oxidation signal in relation to ds-DNA at the surface of PA/CuO/MWCNTs/PGE has been examined to determination Goserelin for the first time. It also, established a strong conductive condition to determination Goserelin in nanomolar concentration. Thus, Goserelin's determining, however, has a 0.21 nM detection limit and a 1.0 nM-110.0 µM linear dynamic range according to differential pulse voltammograms (DPV) of ds-DNA/PA/CuO/MWCNTs/PGE. Furthermore, the molecular docking investigation highlighted that Goserelin is able to bind ds-DNA preferentially and supported the findings of the experiments. The determining of Goserelin in real samples has been effectively accomplished in the last phase using ds-DNA/PA/CuO/MWCNTs/PGE.
Collapse
Affiliation(s)
| | - F. Al-dolaimy
- Community Health Department, Al-Zahraa University for Women, Karbala, Iraq
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghasen M. Sulaman
- Department of Medical Laboratories, Sawa University, Almuthana, Iraq
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | | | - Ali G. Alkhatami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Aggarwal R, Jain N, Dubey GP, Singh S, Chandra R. Visible Light-Prompted Regioselective Synthesis of Novel 5-Aroyl/hetaroyl-2',4-dimethyl-2,4'-bithiazoles as DNA- and BSA-Targeting Agents. Biomacromolecules 2023; 24:4798-4818. [PMID: 37729507 DOI: 10.1021/acs.biomac.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Organic transformations mediated by visible light have gained popularity in recent years as they are green, renewable, inexpensive, and clean and yield excellent products. The present study describes cyclo-condensation of 2-methylthiazole-4-carbothioamide with differently substituted α-bromo-1,3-diketones achieved by utilizing a white light-emitting diode (LED) (9W) to accomplish the regioselective synthesis of novel 5-aroyl/hetaroyl-2',4-dimethyl-2,4'-bithiazole derivatives as DNA/bovine serum albumin (BSA)-targeting agents. The structure characterization of the exact regioisomer was achieved unequivocally by heteronuclear two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy [1H-13C] HMBC; [1H-13C] HMQC; and [1H-15N] HMBC. In silico toxicity studies indicated that the synthesized compounds exhibit low toxicity risks and adhere to the rules of oral bioavailability without any exception. Computational molecular modeling of the bithiazole derivatives with the dodecamer sequence of the DNA duplex and BSA identified 5-(4-chlorobenzoyl)-2',4-dimethyl-2,4'-bithiazole 7g as the most suitable derivative that can interact effectively with these biomolecules. Furthermore, theoretical results concurred with the ex vivo binding mode of the 7g with calf thymus DNA (ct-DNA) and BSA through a variety of spectroscopic techniques, viz., ultraviolet-visible (UV-visible), circular dichroism (CD), steady-state fluorescence, and competitive displacement assay, along with viscosity measurements.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi 110012, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
3
|
Al-Qargholi B, Al-Dolaimy F, Altalbawy FMA, Kadhim AJ, Alsaalamy AH, Suliman M, Abbas AHR. Surface modification of a screen-printed electrode with a flower-like nanostructure to fabricate a guanine DNA-based electrochemical biosensor to determine the anticancer drug pemigatinib. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5146-5156. [PMID: 37753580 DOI: 10.1039/d3ay01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The present study developed a DNA biosensor to determine pemigatinib for the first time. Three-dimensional carnation flower-like Eu3+:β-MnO2 nanostructures (3D CF-L Eu3+:β-MnO2 NSs) and a screen-printed electrode (SPE) modified with polyaniline (PA) were employed. The double-stranded DNA was also immobilized completely on the PA/3D CF-L Eu3+:β-MnO2 NSs/SPE. Then, electrochemical techniques were used for characterizing the modified electrode. After that, the interaction between pemigatinib and DNA was shown by a reduction in the oxidation current of guanine using differential pulse voltammetry (DPV). According to the analysis, the dynamic range of pemigatinib was between 0.001 and 180.0 μM, indicating the new electrode has a low limit of detection (LOD = 0.23 nM) for pemigatinib. Afterwards, pemigatinib in real samples was measured using the PA/3D CF-L Eu3+:β-MnO2 NSs/SPE loaded with ds-DNA. The proposed DNA biosensor showed good selectivity toward pemigatinib in the presence of other interference analytes, such as other ions, structurally related pharmaceuticals, and plasma proteins. In addition, the interaction site of pemigatinib with DNA was predicted by molecular docking, which showed the interaction of pemigatinib with the guanine bases of DNA through a groove binding mode. Finally, we employed the t-test to verify the capability of the ds-DNA/PA/3D CF-L Eu3+:β-MnO2 NSs/SPE for analyzing pemigatinib in real samples.
Collapse
Affiliation(s)
- Basim Al-Qargholi
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001 Hilla, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abed J Kadhim
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hussien R Abbas
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Iraq
| |
Collapse
|
4
|
Abbasi M, Jahani S, Biroudian S, Boroujeni MA, Maghfoury F, Amini-Zadeh M, Malekyan L, Faramarzpoor HR, Foroughi MM. A nanoscale electrochemical guanine DNA-biosensor based on a flower-like nanocomposite of Tb-doped ZnO for the sensitive determination of pemetrexed. RSC Adv 2023; 13:29450-29462. [PMID: 37818257 PMCID: PMC10561636 DOI: 10.1039/d3ra03983h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
Pemetrexed is an antineoplastic drug used in chemotherapeutic treatments, especially in malignant mesothelioma and non-small cell lung carcinoma, but can also cause a variety of complications, like stomach pain, nausea, burning, vomiting, numbness, and tingling, emphasizing the need for an approach to quantify the drug in biological matrices. Herein, a DNA-based biosensor was introduced for pemetrexed determination. A hydrothermal approach was used for synthesizing flower-like nanoparticles (NPs) of zinc oxide (ZnO) doped with Tb (FL-NP Tb3+/ZnO). Moreover, energy dispersive X-ray (EDX), field-emission scanning electron microscopy (FESEM), zeta potential, Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD) analyses were used for characterizing the as-prepared nanocomposite. According to the impedance analysis, FL-NP Tb3+/ZnO was accompanied by very good electrochemical functions for a simple transfer of electrons. In the case of the immobilization of double-stranded deoxyribonucleic acid (ds-DNA) on the FL-NP Tb3+/ZnO and polypyrrole (PP)-modified pencil graphite electrode (ds-DNA/PP/FL-NP Tb3+/ZnO/PGE), a considerable enhancement was found in the electrochemical oxidation of guanine in ds-DNA residue bases. Since there was an interaction between ds-DNA and pemetrexed, the voltammetric current of guanine over the ds-DNA/PP/FL-NP Tb3+/ZnO/PGE declined in the presence of pemetrexed in the electrolytic solution. Moreover, under optimum conditions (25 mg L-1 of ds-DNA and 10 min incubation time, in acetate buffer at 25 °C), a linear decrease in the guanine signal was observed on the ds-DNA/PP/FL-NP Tb3+/ZnO/PGE as the pemetrexed concentration increased in the range from 0.001 μM to 175.0 μM with a limit of detection of 0.17 nM. Finally, the new DNA-based biosensor was successfully used for determining pemetrexed in real samples, indicating its application potential.
Collapse
Affiliation(s)
- Mahmoud Abbasi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran +98 34331321750
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
| | - Saeed Biroudian
- Department of Medical Ethics, Medical School, Iran University of Medical Sciences Tehran Iran
| | | | | | | | - Leila Malekyan
- Department of Nursing, School of Nursing and Midwifery, Bam University of Medical Sciences Bam Iran
| | | | | |
Collapse
|
5
|
Hadidi S. A binuclear Cu(I)-phosphine complex as a specific HSA site I binder: synthesis, X-ray structure determination, and a comprehensive HSA interaction analysis. J Biomol Struct Dyn 2023; 41:7616-7626. [PMID: 36120938 DOI: 10.1080/07391102.2022.2123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
In this research, we present a method for synthesis and a detailed description of geometry characterization of a novel binuclear Cu(I) phosphine complex, along with analysis of its interaction with HSA using spectroscopic and simulation methods. The Cu atoms are coordinated in a tetrahedral geometry, which results in coordination by two nitrogen atoms from the N,N'-(ethane-1,2-diyl)bis(1-(pyridin-2-yl)methanimine ligand (L), a chloride, and a PPh3. The complex binding constant to HSA in a biochemical environment was determined to be ∼106, which is indicative of a strong interaction. The fluorescence of HSA is significantly quenched by binding to the complex via a static mechanism, whereas the microenvironment of the tryptophan residue remains unchanged. A spontaneous binding process was indicated by a negative value for ΔG. Thermodynamic signatures reflect the dominance of hydrophobic forces during the interaction. The site marker competitive experiment combined with docking simulation analysis revealed the closeness position of the complex binding site to warfarin location in specific ligand site I of HSA. The information generated in the present study would be valuable to understand the interaction mechanistic and pharmacological behavior of Cu(I) complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Guglielmelli A, D’Aquila P, Palermo G, Dell’Aglio M, Passarino G, Strangi G, Bellizzi D. Role of the Human Serum Albumin Protein Corona in the Antimicrobial and Photothermal Activity of Metallic Nanoparticles against Escherichia coli Bacteria. ACS OMEGA 2023; 8:31333-31343. [PMID: 37663494 PMCID: PMC10468930 DOI: 10.1021/acsomega.3c03774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023]
Abstract
The emergence of antibiotic-resistant bacteria has become a major public health concern, leading to growing interest in alternative antimicrobial agents. The antibacterial activity of metal nanoparticles (NPs) has been extensively studied, showing that they can effectively inhibit the growth of various bacteria, including both Gram-positive and -negative strains. The presence of a protein corona, formed by the adsorption of proteins onto the NP surface in biological fluids, can significantly affect their toxicity. Understanding the effect of the protein corona on the antimicrobial activity of metal NPs is crucial for their effective use as antimicrobial agents. In this study, the antimicrobial activity of noble metal NPs, such as platinum (Pt), silver (Ag), and gold (Au) with and without the human serum albumin (HSA) protein corona against Escherichia coli strains, was investigated. In addition, the plasmonic photothermal effect related to AuNPs, which resulted to be the most biocompatible compared to the other considered metals, was evaluated. The obtained results suggest that the HSA protein corona modulated the antimicrobial activity exerted by the metal NPs against E. coli bacteria. These findings may pave the way for the investigation and development of innovative nanoapproaches to face antibiotic resistance emergence.
Collapse
Affiliation(s)
- Alexa Guglielmelli
- Department
of Physics, NLHT-Lab, University of Calabria
and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Patrizia D’Aquila
- Department
of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanna Palermo
- Department
of Physics, NLHT-Lab, University of Calabria
and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Marcella Dell’Aglio
- CNR-IFN,
Institute for Photonics and Nanotechnologies, c/o Physics Department, University of Bari, Via Amendola 173, 70126 Bari, Italy
| | - Giuseppe Passarino
- Department
of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Strangi
- Department
of Physics, NLHT-Lab, University of Calabria
and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
- Department
of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, Ohio 44106, United States
| | - Dina Bellizzi
- Department
of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
7
|
Jafari A, Eslami Moghadam M, Mansouri-Torshizi H. Green Synthesis and Bioactivity of Aliphatic N-Substituted Glycine Derivatives. ACS OMEGA 2023; 8:30158-30176. [PMID: 37636948 PMCID: PMC10448692 DOI: 10.1021/acsomega.3c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Standard amino acids have an asymmetric α-carbon atom to which -COOH, -NH2, -H, and -R groups are bonded. Among them, glycine is the simplest (R = -H) with no asymmetric carbon, and other natural amino acids are C-substituted of glycine. Here, we have designed and made a green synthesis of some new N-substituted glycine derivatives with R-(NH)CH2-COOH formula, where R is flexible and hydrophobic with different chain lengths and benches of the type propyl, butyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl, hexyl, 2-aminoheptyl, and octyl. These glycine derivatives were characterized by recording their melting points and FT-IR, mass, 1H NMR, and 13C NMR spectra. DFT studies revealed that 2-aminoheptyl glycine had the highest electronegativity value and can thus act as a good bidentate ligand for the metal centers. ADME comparative results and bioavailability radars indicated that both octyl- and 2-aminoheptyl glycine had the most lipophilicity, making them good agents in cell passing. Furthermore, lipophilicity determination showed that octyl glycine was the best and propylgly was more soluble than others. Based on solubility, lipophilicity, and dipole moment values, propyl- and 2-aminoheptyl-glycine were considered for bio-macromolecular interaction studies. Thus, the interaction of these two agents with DNA and HSA was studied using absorption spectroscopy and circular dichroism techniques. Due to the presence of the R-amine group, they can interact with the DNA by H-binding and hydrophobicity, while electrostatic mode could not be ruled out. Meanwhile, molecular docking studies revealed that octyl- and 2-aminoheptyl glycine had the highest negative docking energy, which reflects their higher tendency to interact with DNA. The DNA binding affinity of two candidate AAs was determined by viscosity measurement and fluorescence emission recording, which confirms that groove binding occurs. Also, the toxicity of these synthesized amino acid derivates was tested against the human foreskin fibroblast (HFF) cell line. They showed IC50 values within the range of 127-344 μM after 48 h with the highest toxicity for 2-aminoheptyl glycine.
Collapse
Affiliation(s)
- Ameneh Jafari
- Chemistry
and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | | |
Collapse
|
8
|
Raeisi Vanani A, Asadpour S, Aramesh-Boroujeni Z, Mobini Dehkordi M. Studying the interaction between the new neodymium (Nd) complex with the ligand of 1,10-phenanthroline with FS-DNA and BSA. Front Chem 2023; 11:1208503. [PMID: 37601904 PMCID: PMC10433770 DOI: 10.3389/fchem.2023.1208503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
To learn more about the chemotherapeutic and pharmacokinetic properties of a neodymium complex containing 1,10-phenanthroline (dafone), In vitro binding was investigated with bovine serum albumin and fish-salmon DNA, using a variety of molecular modeling research and biophysical approaches. A variety of spectroscopic techniques including fluorescence and absorption were used to investigate the interplay between DNA/BSA and the neodymium complex. The findings revealed that the Nd complex had a high affinity for BSA and DNA interplays through van der Waals powers. In addition, the binding of the Nd complex to FS-DNA mainly in the groove binding mode clearly reflects with iodide quenching studies, ethidium bromide (EtBr) exclusion assay, ionic strength effect, and viscosity studies. It was observed that the Nd complex binds to FS-DNA through a minor groove with 3.81 × 105 (M-1). Also, Kb for BSA at 298 K was 5.19×105 (M-1), indicating a relatively high affinity of the Nd complex for DNA and BSA. In addition, a competitive study of a docking investigation revealed that the neodymium complex interacts at BSA site III. The results obtained from the binding calculations are well consistent with the experimental findings. Also, cytotoxicity studies of Nd complex were performed in MCF-7 and A-549 cell lines and the results show that this new complex has a selective inhibitory effect on the growth of various cancer cells.
Collapse
Affiliation(s)
- Ahmad Raeisi Vanani
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
9
|
Niroomand S, Jahanara A, Jahani S, Sargazi G, Patrick BO, Noroozifar M, Khorasani-Motlagh M. A novel binuclear Lanthanum complex containing 1,10-phenanthroline; from crystal structure to biological and antitumor activity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Saputri D, Mubarak Z, Mudatsir M, Setyawati I, Setiawan AG, Abrar M. Probing antibacterial drugs for Fusobacterium nucleatum subsp. nucleatum ATCC 25586 targeting UDP-N-acetylglucosamine 1-carboxyltransferase. J Adv Pharm Technol Res 2023; 14:196-201. [PMID: 37692019 PMCID: PMC10483916 DOI: 10.4103/japtr.japtr_129_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/16/2023] [Accepted: 05/03/2023] [Indexed: 09/12/2023] Open
Abstract
Fusobacterium nucleatum is a Gram-negative anaerobic bacteria that is commonly found in oral cavities and is associated with connective tissue destruction in periodontitis. UDP-N-acetylglucosamine 1-carboxyltransferase with enzyme commission number 2.5.1.7 is a transferases enzyme that plays a role in bacterial pathogenesis. Inhibiting binding sites of UDP-N-acetylglucosamine 1-carboxyltransferase is needed to find potential antibiotic candidates for periodontitis treatment. Hence, the research aimed to present potential UDP-N-acetylglucosamine 1-carboxyltransferase inhibiting compounds through molecular docking simulation by in silico analysis. DrugBank database was used to obtain the antibacterial candidates, which were further screened computationally using the AutoDock Vina program on Google Colab Pro. The top nine compounds yielded binding affinity ranging from -12.1 to -12.8 kcal/mol, with conivaptan as one of the three compounds having the highest binding affinity. Molecular dynamic study revealed that the ligand-protein complex for conivaptan had root-mean-square deviation values of 0.05-1.1 nm, indicating likeliness for stable interaction. Our findings suggest that conivaptan is the potent UDP-N-acetylglucosamine 1-carboxyltransferase inhibitor, hence its efficacy against periodontitis-causing bacteria.
Collapse
Affiliation(s)
- Dewi Saputri
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Zaki Mubarak
- Department of Microbiology, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mudatsir Mudatsir
- Department of Microbiology, Faculty of Medicines, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Inda Setyawati
- Department of Biochemistry, Faculty of Mathematics and Natural Science, Bogor Agricultural University, West Java, Indonesia
| | - Aprijal Ghiyas Setiawan
- Department of Biochemistry, Faculty of Mathematics and Natural Science, Bogor Agricultural University, West Java, Indonesia
| | - Mahdi Abrar
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
11
|
Ndayiragije E, Caumul P, Joondan N, Akerman MP, Bhowon MG, Jhaumeer‐Laulloo S. Radical scavenging abilities of L-tyrosine and L-DOPA Schiff bases and their fluorescence binding studies and molecular docking interactions with Bovine serum albumin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
12
|
Ali MS, Rehman MT, Al-Lohedan HA, AlAjmi MF. Exploration of the binding between cuminol and bovine serum albumin through spectroscopic, molecular docking and molecular dynamics methods. J Biomol Struct Dyn 2022; 40:12404-12412. [PMID: 34488560 DOI: 10.1080/07391102.2021.1971560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cuminol (4-Isopropylbenzyl alcohol), found in the essential oils of several plant sources, is an important constituent of several cosmetics formulations. The interaction of cuminol with model plasma protein bovine serum albumin was studied in this paper. The experimental studies were mainly carried out using fluorescence spectrophotometry aided with UV visible and CD spectroscopies. Intrinsic fluorescence measurements showed that there was a weak binding between cuminol and BSA. The mechanism of binding involved static quenching with around 1:1 binding. The binding was chiefly supported by hydrophobic forces although a little contribution of hydrogen bonding was also found in the interaction and the values of enthalpy change were negative with positive entropy change. The secondary structure of BSA didn't change significantly in presence of low concentrations of cuminol, however, partial unfolding of the former taken place when the concentration of the latter increased. Molecular docking analyses showed cuminol binds at the intersection of subdomains IIA and IIIA, i.e. its binding site is in between Sudlow sites I and II. Molecular dynamics simulations results have shown that BSA forms a stable complex with cuminol and the structure of the former didn't change much in presence of later. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Alanazi RLB, Zaki M, Bawazir WA. Synthesis and characterization of the new ligand, 1,2,4-triazino[5,6-b]indol-3-ylimino methyl naphthalene-2-ol and its Ni(II) and Cu(II) complexes: comparative studies of their in vitro DNA and HSA Binding. Biometals 2022; 35:1199-1223. [PMID: 36074281 DOI: 10.1007/s10534-022-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
A new ligand 1,2,4-triazino[5,6-b]indol-3-ylimino methyl naphthalene-2-ol (HL) was derived from 5H-[1,2,4]triazino[5,6-b]indol-3-amine and 2-hydroxy-1-naphthaldehyde. The metal complexes of the type [Ni(L)(Bipy)]1/2SO4 (1), [Cu(L)(Bipy)(H2O)2]1/2SO4 (2), [Ni(L)(Phen)]1/2SO4 (3) and [Cu(L)(Phen)(H2O)2]1/2SO4 (4) were synthesized. The ligand (HL) and complexes 1-4 were thoroughly characterized by elemental analysis and spectroscopic methods (FT-IR, ToF-MS, 1H NMR, 13C NMR), molar conductance and magnetic moment determination. The Ni(II) complexes 1 and 3 adopt the square planar geometry and Cu(II) complexes 2 and 4 acquire distorted octahedral arrangement. In vitro DNA binding behavior of ligand (HL) and metal complexes 1-4 was explored by fluorescence spectral and ethidium bromide studies. The outcomes reveal that the complexes interact with DNA via non-covalent groove binding and electrostatic interactions. The higher binding constant (K) values of 4.35 × 104 and 9.12 × 104 M-1 for complexes 2 and 4 indicate stronger binding ability with DNA. Moreover, in vitro human serum albumin (HSA) binding experiment with HL and complexes 1-4 reveals conformational modulations in the Trp-214 microenvironments in the subdomain IIA pocket.
Collapse
Affiliation(s)
- Reem L B Alanazi
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Mehvash Zaki
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Wafa A Bawazir
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. Biological activity of bis-(morpholineacetato)palladium(II) complex: Preparation, structural elucidation, cytotoxicity, DNA-/serum albumin-interaction, density functional theory, in-silico prediction and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121543. [PMID: 35797947 DOI: 10.1016/j.saa.2022.121543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
In an effort to discover a novel potential bioactive compound, a mono-nuclear Pd(II) complex with an amino acid derivative as ligand was synthesized and characterized through experimental and computational methodologies. A square-planar configuration was suggested for palladium(II) complex utilizing density functional theory. MEP map and Mulliken atomic charge were detected electrophilic and nucleophilic regions of the compound for reactions. The lipophilicity and cytotoxic activity of the complex was more effective than cisplatin. Also, OSIRIS DataWarrior revealed proper oral bioavailability and good drug-likeness for the compound. In-vitro binding behavior of the Pd(II) complex with DNA and serum albumin (BSA) were fully determined via variety of procedures including fluorescence, UV-Vis, CD, viscosity, gel electrophoresis experiments and molecular simulation. The negative signs of ΔH° and ΔS° for Pd(II) complex-CT-DNA/-BSA systems indicated the existence of hydrogen bonding/van der Waals interactions for both binding systems. Additionally, docking simulation illustrated the interaction of Pd(II) complex with the minor groove of DNA and the hydrophobic cavity of the BSA (drug binding site I).
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
15
|
Lei Z, Alwan M, Alamir HTA, Alkaaby HHC, Farhan SS, Awadh SA, Altimari US, Al-Baghdady HFA, Kadhim AA, Qasim MT, Adhab AH, Nekuei A. Detection of abemaciclib, an anti-breast cancer agent, using a new electrochemical DNA biosensor. Front Chem 2022; 10:980162. [PMID: 36339035 PMCID: PMC9635563 DOI: 10.3389/fchem.2022.980162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Detection of DNA molecules and possible chemotherapy-induced changes in its structure has been the goal of researchers using rapid, sensitive and inexpensive approaches. Therefore, the aim of this study was to fabricate a new electrochemical DNA biosensor using pencil graphite electrodes modified with polypyrrole/Ce doped hexagonal nickel oxide nanodisks or PP/Ce-doped H-NiO-ND composites for determination of Abemaciclib (AMC) and ds-DNA molecules. The DNA biosensor was prepared by immobilizing ds-DNA on the surface of PP/Ce-doped H-NiO-ND/PGE. Differential pulse voltammetry (DPV) was used to electrochemically detect AMC. The results elucidate the extremely high sensitivity of the ds-DNA/PP/Ce-doped H-NiO-ND/PGE biosensor to AMC, with a narrow detection limit of 2.7 nM and a lengthy linear range of 0.01–600.0 μM. The admirable performance of as-fabricated biosensor could be related to the active reaction sites and the unique electrochemical response related to the nanocomposites by enhancing ds-DNA stabilization and accelerating electron transfer on the surface of electrode.
Collapse
Affiliation(s)
- Zimeng Lei
- School of International Education, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Zimeng Lei, ; Abuzar Nekuei,
| | - Merim Alwan
- Medical Lab. Techniques Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - Sura A. Awadh
- Department of Anesthesia, Al-mustaqbal University, Babylon, Iraq
| | | | | | - Athmar Ali Kadhim
- Medical Laboratories Teachniques, Hilla University College Babylon, Babylon, Iraq
| | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ali Hussein Adhab
- Department of Medical Laboratory Technics, Al-Zahrawi University College, Karbala, Iraq
| | - Abuzar Nekuei
- Islamic Azad University of South Tehran Branch, Tehran, Iran
- *Correspondence: Zimeng Lei, ; Abuzar Nekuei,
| |
Collapse
|
16
|
Zaki M, Hairat S, Kamaal S, Aljarba NH, AL–Johani NS, Alkahtani S. Synthesis, crystal structure elucidation and DNA/HSA binding profile of Ni(II) complex of Schiff base derived from 3–ethoxy salicylaldehyde and o–phenylenediamine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
An efficient electrochemical sensor for determination of sulfite in water and soft drinks based on Ce3+-doped CuO nanocomposite. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Niosomes: a novel targeted drug delivery system for cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:240. [PMID: 36175809 DOI: 10.1007/s12032-022-01836-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 10/25/2022]
Abstract
Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.
Collapse
|
19
|
Mousavizadeh FS, Sarlak N, Ghorbanpour M, Ghafarzadegan R. Rapid Detection and Determination of Scopolamine in the Leaf Extract of Black Henbane ( Hyoscyamus niger L.) Plants Using a Novel Nanosensor. J AOAC Int 2022; 105:1730-1740. [DOI: 10.1093/jaoacint/qsac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Scopolamine is among the most essential tropane alkaloids used to remedy various nervous system disorders such as urinary incontinence, motion sickness, and spasmodic movements because of its anticholinergic and antispasmodic effects.
Objective
In this study, an optical nanosensor was fabricated using nano-Dragendorff’s reagent to detect and determine scopolamine in different plant parts at different stages of growth.
Method
For fabrication of the sensing phase, GO-g-PCA/DR was synthesized by encapsulation of Dragendorff’s reagent (DR) on the graphene oxide grafted with poly citric acid (GO-g-PCA) with ultrasonication for 15 min and stirred for 80 min at room temperature, and then it was immobilized on a triacetyl cellulose membrane. The kinetic absorption profiles were recorded at 360 nm, which is concerned with the reaction between immobilized GO-g-PCA/DR and different concentrations of scopolamine.
Results
The nanosensor showed a rapid, strong, and stable response to the scopolamine solution with changing the absorption spectrum at 360 nm. The reaction was completed in a period of 300 s. The SEM, AFM, and FT-IR analysis of nanocomposites and nanosensors show the successful synthesis of GO-g-PCA/DR and the reaction between nanosensor and scopolamine. All experiments were performed at the wavelength of 360 nm, room temperature, pH 7 (the scopolamine solution pH), and 300 s. The nanosensor had a linear range of 0.65 to 19.63 μg/mL and 0.19 ± 0.025 μg/mL as the limit of detection for scopolamine determination. In order to reuse the designed nanosensor, it was recovered with ethanol, and the color ultimately returned to its original state.
Conclusions
This in situ nanosensor can determine the scopolamine in real samples with easy reversibility, extended lifetime, and reproducibility of the sensing phase response.
Highlights
A sensitive, precise, and fast response optical nanosensor is designed for in situ determination of scopolamine in real samples.
Collapse
Affiliation(s)
- Fatemeh Sadat Mousavizadeh
- Lorestan University, Faculty of Science, Department of Chemistry, Kilometer 5 ehran Road , 68151443169 Khorramabad, Iran
| | - Nahid Sarlak
- Lorestan University, Faculty of Science, Department of Chemistry, Kilometer 5 ehran Road , 68151443169 Khorramabad, Iran
| | - Mansour Ghorbanpour
- Arak University, Faculty of Agriculture and Natural Resources, Department of Medicinal Plants, Shahid Beheshi street, 3815688349 Arak , Iran
| | - Reza Ghafarzadegan
- Medicinal Plants Research Center, Academic Center for Education, Culture and Research, Behesht-e-Sakineh street , 3365166571 Karaj, Iran
| |
Collapse
|
20
|
Foroughi MM, Jahani S. Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Das M, Mukherjee S, Islam MM, Choudhuri I, Bhattacharyya N, Samanta BC, Dutta B, Maity T. Response of Ancillary Azide Ligand in Designing a 1D Copper(II) Polymeric Complex along with the Introduction of High DNA- and HAS-Binding Efficacy, Leading to Impressive Anticancer Activity: A Compact Experimental and Theoretical Approach. ACS OMEGA 2022; 7:23276-23288. [PMID: 35847281 PMCID: PMC9281303 DOI: 10.1021/acsomega.2c01403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new versatile azide-bridged polymeric Cu(II) complex, namely, [Cu(L)(μ1,3-N3)]∞ (1), was synthesized utilizing an N,N,O-donor piperidine-based Schiff base ligand (E)-4-bromo-2-((2-(-1-yl)imino)methyl)phenol (HL), obtained via the condensation reaction of 1-(2-aminoethyl) piperidine and 5-bromo salicylaldehyde. The single-crystal X-ray diffraction analysis reveals that complex 1 consists of an end-to-end azido-bridged polymeric network, which is further rationalized with the help of a density functional theory (DFT) study. After routine characterization with a range of physicochemical studies, complex 1 is exploited to evaluate its biomedical potential. Initially, theoretical inspection with the help of a molecular docking study indicated the ability of complex 1 to effectively bind with macromolecules such as DNA and the human serum albumin (HSA) protein. The theoretical aspect was further verified by adopting several spectroscopic techniques. The electronic absorption spectroscopic analysis indicates a remarkable binding efficiency of Complex 1 with both DNA and HSA. The notable fluorescence intensity reduction of the ethidium bromide (EtBr)-DNA adduct, 4',6-diamidino-2-phenylindole (DAPI)-DNA adduct, and HSA after the gradual addition of complex 1 authenticates its promising binding potential with the macromolecules. The retention of the canonical B form of DNA and α form of HSA during the association of complex 1 was confirmed by implementing a circular dichroism spectral study. The association ability of complex 1 with macromolecules further inspired us to inspect its impact on different cell lines such as HeLa (cervical cancer cell), PA1 (ovarian cancer cell), and HEK (normal cell). The dose-dependent and time-dependent in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay suggests an effective antiproliferative property of complex 1 with low toxicity toward the normal cell line. Finally, the anticancer activity of complex 1 toward carcinoma cell lines was analyzed by nuclear and cellular staining techniques, unveiling the cell death mechanism.
Collapse
Affiliation(s)
- Manik Das
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai 721404, India
| | - Somali Mukherjee
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Md. Maidul Islam
- Department
of Chemistry, Aliah University, Kolkata 700064, India
| | - Indranil Choudhuri
- Department
of Chemistry, Panskura Banamali College, Panskura 721152, India
| | | | - Bidhan Chandra Samanta
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Purba Medinipur 721425, India
| | - Basudeb Dutta
- Department
of Chemical Science, IISER Kolkata, Mohanpur, Kolkata 741246, India
| | - Tithi Maity
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai 721404, India
| |
Collapse
|
22
|
Kaleeswarran P, Koventhan C, Chen SM, Arumugam A. Coherent design of indium doped copper bismuthate-encapsulated graphene nanocomposite for sensitive electrochemical detection of Rutin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Majidi S, Aramesh-Boroujeni Z, Moghadam M, Jahani S. Can One Novel Lanthanide Complex and Its Nano-Encapsulated Compounds Afford Advances in Biological Inorganic Chemistry? A Biological Applications Study for Dysprosium (III) Complex and Its Nano-Encapsulated Compounds. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2075859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Somayeh Majidi
- Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | | | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
24
|
Aggarwal R, Hooda M, Kumar P, Jain N, Dubey GP, Chugh H, Chandra R. Visible-Light-Prompted Synthesis and Binding Studies of 5,6-Dihydroimidazo[2,1- b]thiazoles with BSA and DNA Using Biophysical and Computational Methods. J Org Chem 2022; 87:3952-3966. [PMID: 35235320 DOI: 10.1021/acs.joc.1c02471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fused heterocyclic systems containing a bridgehead nitrogen atom have emerged as imperative pharmacophores in the design and development of new drugs. Among these heterocyclic moieties, the imidazothiazole scaffold has long been used in medicinal chemistry for the treatment of various diseases. In this study, we have established a simplistic and environmentally safe regioselective protocol for the synthesis of 5,6-dihydroimidazo[2,1-b]thiazole derivatives from easily available reactants. The reaction proceeds through in situ formation of the α-bromodiketones ensuing trap with imidazolidine-2-thione to provide these versatile bicyclic heterocycles in excellent yields. The synthesized compounds were screened through the molecular docking approach for the most stable complex formation with bovine serum albumin (BSA) and calf thymus deoxyribonucleic acid (ctDNA). The selected compound was further studied using ex vivo binding studies, which revealed moderate interactions with BSA and ctDNA. The binding studies were performed using biophysical approaches including UV-visible spectroscopy, steady-state fluorescence, circular dichroism (CD), and viscosity parameters.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.,CSIR-National Institute of Science Communication and Policy Research, New Delhi 110012, India
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
25
|
Moarefdoust MM, Jahani S, Moradalizadeh M, Motaghi MM, Foroughi MM. A DNA Biosensor Based on a Raspberry-like Hierarchical Nano-structure for the Determination of the Anticancer Drug Nilotinib. ChemistryOpen 2022; 11:e202100261. [PMID: 35333006 PMCID: PMC8950773 DOI: 10.1002/open.202100261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
It is crucial to design fast, sensitive and affordable deoxyribonucleic acid (DNA) recognition instruments, and elucidate changes in DNA structure, for studying the interaction between DNA and chemotherapy drugs. Therefore, a DNA biosensor, based on a carbon paste electrode (CPE), modified with raspberry-like indium(III)/nickel oxide hierarchical nano-structures (In3+ /NiO RLHNSs) was constructed. An electrochemical readout should then give information on the interactions between anticancer drugs and double-stranded (ds)-DNA. The morphology as well as the electrochemical description of this new biosensor is described. Based on experimentally determined optimal conditions, ds-DNA modified with In3+ /NiO RLHNSs/CPE was used to evaluate the binding interaction of nilotinib, as an anti-cancer drug, with DNA through differential pulse voltammetry (DPV), UV-Vis spectroscopy, viscosity measurements and a computational docking process. The analyses indicated the linearity of the guanine oxidation signal at nilotinib concentration is given between 0.01 and 50.0 μm, with the limit of detection (LOD) equal to 0.62 nm. Additionally, the equilibrium constant (K) for the binding was determined to 1.5×104 m-1 . Through the quantitative measurement of nilotinib in serum samples with a high recovery rate of 101.3-98.0 %, the applicability of this approach was demonstrated. As a whole, this DNA biosensor may be promising for various bio-interactions.
Collapse
Affiliation(s)
- Mohammad Mehdi Moarefdoust
- Department of ChemistryKerman BranchIslamic Azad UniversityKermanIran
- Department of ChemistryZarand BranchIslamic Azad UniversityZarandIran
| | - Shohreh Jahani
- Noncommunicable Diseases Research CenterBam University of Medical SciencesBamIran
| | | | | | | |
Collapse
|
26
|
Majumder M, Das T, Sepay N, Rajak KK. A study of DNA/BSA interaction and catalytic potential of oxidovanadium(V, IV) complexes incorporating dibenzofuran based O^N^O ligand. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Jahani S, Aramesh-Boroujeni Z, Noroozifar M. In vitro anticancer and antibacterial activates of the yttrium(III) complex and its nano-carriers toward DNA cleavage and biological interactions with DNA and BSA; An experimental and computational studie. J Trace Elem Med Biol 2021; 68:126821. [PMID: 34315038 DOI: 10.1016/j.jtemb.2021.126821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES In this research, the biological properties of the yttrium (III) (Y) complex, with 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) ligand, were examined for in vitro fish DNA (FS-DNA)/ bovine serum albumin (BSA) interactions, DNA-cleavage, anticancer and antibacterial activities. METHODS Multi-spectrophotometric techniques and computational calculations were used for the interaction studies of the BSA and FS-DNA with the Y-complex. Absorption and fluorescence spectroscopy methods were used to define thermodynamic parameters, the binding constants (Kb), and the probable binding mechanism. Also, the DFT (density functional theory) study and molecular docking calculation of the Y-complex were done. Besides, the nanocarriers of Y-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. Finally, DNA-cleavage, anticancer, and antibacterial activities of this complex were investigated. RESULTS The absorption and fluorescence measurements were exhibited that the Y-complex has a high binding affinity to FS-DNA and BSA through a static mechanism. The negative thermodynamic parameter values for both DNA/BSA binding were confirmed that the hydrogen bonds and van der Waals forces played an essential role in the spontaneous bonding procedure. The site marker competitive studies for BSA confirmed that the Y-complex bonds to the sub-domain IB of protein (site III) on BSA, which was entirely agreement by docking calculation. The complex has displayed efficient DNA cleavage, antifungal and antibacterial activities. The anticancer activity of the Y-complex and its starch/lipid nano-encapsulated was carried out in cancer cell lines, which exposed considerably high activity. CONCLUSIONS Thus, Y-complex can be transported professionally through BSA in the blood and bonds in the groove of DNA. Base on biological applications of the Y-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer and antibacterial candidates.
Collapse
Affiliation(s)
- Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
28
|
Liu G, Wu S, Liu W, Gao G, Zhang Y, Gao E, Zhu M. Three novel spiral chain Nd (III) Eu (III) Sm (III)complexes bridged by 1,1 '(1,4‐phenylene‐bis [methylene])‐bis (pyridine‐3‐carboxylicaicd): Synthesis, structural characterization, and antitumor activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gongchi Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Wei Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Guoxu Gao
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education) Shenyang University Chemical Technology Shenyang China
| |
Collapse
|
29
|
Alanazi RL, Zaki M, Bawazir WA. Synthesis and characterization of new metal complexes containing Triazino[5,6–b]indole moiety: In vitro DNA and HSA binding studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Aggarwal R, Jain N, Sharma S, Kumar P, Dubey GP, Chugh H, Chandra R. Visible-light driven regioselective synthesis, characterization and binding studies of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines with DNA and BSA using biophysical and computational techniques. Sci Rep 2021; 11:22135. [PMID: 34764313 PMCID: PMC8586366 DOI: 10.1038/s41598-021-01037-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
In recent times, fused azaheterocycles emerged as impressive therapeutic agents. Binding studies of such azaheterocycles with biomolecules is an important subject for pharmaceutical and biochemical studies aiming at the design and development of new drugs. Fused heterocyclic scaffolds, such as thiazolopyrmidines have long been used in the pharmaceutical industry for the treatment of various diseases. In this study, we have accomplished a regioselective synthesis of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines by the reaction of tetrahydropyrimidine-2(H)-thione with α-bromo-1,3-diketones, generated in situ from 1,3-diketones and NBS, using visible light as an inexpensive, green and renewable energy source under mild reaction conditions with wide-ranging substrate scope. The regioisomer was characterized unambiguously by 2D-NMR [1H-13C] HMBC and [1H-13C] HMQC spectroscopy. In silico toxicity data analysis showed the low toxicity risks of the synthesized compounds. Computational molecular docking studies were carried out to examine the interaction of thiazolo[3,2-a]pyrimidines with calf-thymus DNA (ct-DNA) and Bovine Serum Albumin (BSA). Moreover, different spectroscopic approaches viz. steady-state fluorescence, competitive displacement assay, UV-visible and circular dichroism (CD) along with viscosity measurements were employed to investigate the binding mechanisms of thiazolo[3,2-a]pyrimidines with DNA and BSA. The results thus obtained revealed that thiazolo[3,2-a]pyrimidines offer groove bindings with DNA and showed moderate bindings with BSA.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
- Council of Scientific and Industrial Research, National Institute of Science Communication and Policy Research, New Delhi, 110012, India.
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Shilpa Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| |
Collapse
|
31
|
Tesmar A, Kogut MM, Żamojć K, Grabowska O, Chmur K, Samsonov SA, Makowska J, Wyrzykowski D, Chmurzyński L. Physicochemical nature of sodium dodecyl sulfate interactions with bovine serum albumin revealed by interdisciplinary approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Shahedi A, Bolorizadeh MA, Karimi-Maleh H. A europium (III) complex tested for deoxyribonucleic acid-binding, bovine serum albumin binding, and antibacterial activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Ribeiro AG, Alves JEF, Soares JCS, dos Santos KL, Jacob ÍTT, da Silva Ferreira CJ, dos Santos JC, de Azevedo RDS, de Almeida SMV, de Lima MDCA. Albumin roles in developing anticancer compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Foroughi MM, Jahani S, Aramesh-Broujeni Z, Rostaminasab Dolatabad M. A label-free electrochemical biosensor based on 3D cubic Eu 3+/Cu 2O nanostructures with clover-like faces for the determination of anticancer drug cytarabine. RSC Adv 2021; 11:17514-17525. [PMID: 35479699 PMCID: PMC9033006 DOI: 10.1039/d1ra01372f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present research utilized a simplified procedure for developing a novel electro-chemical DNA biosensor based on a carbon paste electrode (CPE) modified with three-dimensional (3D) cubic Eu3+/Cu2O nanostructures with clover-like faces (Eu3+/Cu2O CLFNs). The modified electrode was applied to monitor electro-chemical interactions between dsDNA and cytarabine for the first time. Then, the decreased oxidation signal of guanine following the interactions between cytarabine and dsDNA was utilized as an indicator for selectively determining cytarabine using differential pulse voltammetry (DPV). According to the findings, the oxidation peak current of guanine was linearly proportionate with the cytarabine concentration in the range between 0.01 and 90 μM. Additionally, the limit of quantification (LOQ) and the limit of detection (LOD) respectively equaled 9.4 nM and 2.8 nM. In addition, the repeatability, applicability and reproducibility of this analysis to drug dosage forms and human serum samples were investigated. Furthermore, UV-vis spectroscopy, DPV, docking and viscosity measurements were applied to elucidate the interaction mechanism of dsDNA with cytarabine. It was found that this DNA biosensor may be utilized to sensitively, accurately and rapidly determine cytarabine.
Collapse
Affiliation(s)
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
| | - Zahra Aramesh-Broujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences Isfahan Iran
| | | |
Collapse
|
35
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Kannan K, Radhika D, Gnanasangeetha D, Lakkaboyana SK, Sadasivuni KK, Gurushankar K, Hanafiah MM. Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108429] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Das M, Mukherjee S, Brandao P, Seth SK, Giri S, Mati SS, Samanta BC, Laha S, Maity T. Active Bromoaniline-Aldehyde Conjugate Systems and Their Complexes as Versatile Sensors of Multiple Cations with Logic Formulation and Efficient DNA/HSA-Binding Efficacy: Combined Experimental and Theoretical Approach. ACS OMEGA 2021; 6:3659-3674. [PMID: 33585746 PMCID: PMC7876678 DOI: 10.1021/acsomega.0c05189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 05/12/2023]
Abstract
Two fluorescence active bromoaniline-based Schiff base chemosensors, namely, (E)-4-bromo-2-(((4-bromophenyl)imino)methyl)phenol (HL1 ) and (E)-2-(((4-bromophenyl)imino)methyl)phenol (HL2 ), have been employed for the selective and notable detection of Cu2+ and Zn2+ ions, respectively, with the simultaneous formation of two new metal complexes [Cu(L1)2] (1) and [Zn(L2)2] (2). X-ray single crystal analyses indicate that complexes 1 and 2 are tetra-coordinated systems with substantial CH...π/π...π stacking interactions in the solid-state crystal structures. These two complexes are exploited for the next step detection of Al3+ and Hg2+ where complex 2 exhibits impressive results via turn-off fluorescence quenching in (DMSO/H2O) HEPES buffer medium. The sensing phenomena are optimized by UV-vis spectral analyses as well as theoretical calculations (density functional theory and time-dependent density functional theory). The combined detection phenomena of the ligand (HL2 ) and complex 2 are exclusively utilized for the first time to construct a molecular memory device, intensifying their multisensoric properties. Furthermore, the DNA- and human serum albumin (HSA)-binding efficacies of these two complexes are examined by adopting electronic and fluorometric titration methods. Complex 2 shows a higher DNA-binding ability in comparison with complex 1, whereas in the case of HSA, the reverse situation is observed. Finally, the binding modes of both the complexes with DNA and HSA have been investigated through molecular docking studies, suggesting good agreement with the experimental results.
Collapse
Affiliation(s)
- Manik Das
- Department
of Chemistry, P. K. College, Contai, Purba Medinipur, West Bengal 721404, India
| | - Somali Mukherjee
- Department
of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Paula Brandao
- Departamento
de Química/CICEC, Universidade de
Aveiro, Aveiro, 3810-193, Portugal
| | | | | | - Soumya Sundar Mati
- Department
of Chemistry, Government General Degree
College, Keshiary 721135, West Bengal India
| | - Bidhan Chandra Samanta
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Purba Medinipur 721425, West Bengal, India
| | | | - Tithi Maity
- Department
of Chemistry, P. K. College, Contai, Purba Medinipur, West Bengal 721404, India
| |
Collapse
|
38
|
Khandar AA, Mirzaei-Kalar Z, Shahabadi N, Hadidi S, Abolhasani H, Hosseini-Yazdi SA, Jouyban A. Antimicrobial, cytotoxicity, molecular modeling and DNA cleavage/binding studies of zinc-naproxen complex: switching DNA binding mode of naproxen by coordination to zinc ion. J Biomol Struct Dyn 2020; 40:4224-4236. [PMID: 33272098 DOI: 10.1080/07391102.2020.1854858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intercalation DNA binding mode of the naproxen, a non-steroidal anti-inflammatory drug, has been reported previously. In this study, calf thymus deoxyribonucleic acid (CT-DNA) binding of zinc-naproxen complex, [Zn(naproxen)2(MeOH)2], at physiological pH has been investigated by multi-spectroscopic techniques and molecular docking. Zinc-naproxen complex displays significant binding property to the CT-DNA (Kb = 0.2 × 105 L.mol-1). All of the experimental results; relative increasing in viscosity of CT-DNA and fluorimetric studies using ethidium bromide (EB) and Hoechst 33258 probes, are indicative of groove binding mode of zinc-naproxen complex to CT-DNA. These results show that the coordination of naproxen to zinc metal switches the mode of binding from intercalation to groove. The molecular modeling also shows that the complex binds to the AT-rich region of minor groove of DNA. Structural and topography changes of DNA in interaction with the complex by atomic force microscopy (AFM) indicated that CT-DNA becomes swollen after interaction. The pUC18 plasmid DNA cleavage ability of zinc-naproxen complex by gel electrophoresis experiments revealed that zinc-naproxen complex cleaved supercoiled pUC18 plasmid DNA to nicked DNA. The cytotoxicity of the zinc complex performed by MTT method on HT29 and MCF7 cancer cell lines and on HEK 293 normal cell lines indicates that zinc complex has no cytotoxic effect on both HT29 and MCF7 cell lines but has better cytotoxicity effect on HEK 293 cell lines compared to cisplatin standard drug. The antimicrobial activity of the complex against Staphylococcus aureus and Escherichia coli bacteria revealed the high antimicrobial activity of the complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Akbar Khandar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Zeinab Mirzaei-Kalar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nahid Shahabadi
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of medical Sciences, Kermanshah, Iran
| | - Saba Hadidi
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Abolghasem Jouyban
- Phamaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Parent and nano-encapsulated ytterbium(iii) complex toward binding with biological macromolecules, in vitro cytotoxicity, cleavage and antimicrobial activity studies. RSC Adv 2020; 10:23002-23015. [PMID: 35520322 PMCID: PMC9054636 DOI: 10.1039/d0ra03895d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023] Open
Abstract
To determine the chemotherapeutic and pharmacokinetic aspects of an ytterbium complex containing 2,9-dimethyl-1,10-phenanthroline (Me2Phen), in vitro binding studies were carried out with FS-DNA/BSA by employing multiple biophysical methods and a molecular modeling study. There are different techniques including absorption spectroscopy, fluorescence spectroscopy, circular dichroism studies, viscosity experiments (only in the case of DNA), and competitive experiments used to determine the interaction mode between DNA/BSA and the ytterbium-complex. The results showed that the Yb-complex exhibited a high propensity for the interaction of BSA and DNA via hydrophobic interactions and van der Waals forces. Further, a competitive examination and docking study showed that the interaction site of the ytterbium complex on BSA is site III. The results of docking calculations for DNA/BSA were in good agreement with experimental findings. The complex displays efficient DNA cleavage in the presence of hydrogen peroxide. Moreover, antimicrobial studies of different bacteria and fungi indicated its promising antibacterial activity. In vitro cytotoxicity studies of the Yb-complex, starch nano-encapsulated, and lipid nano-encapsulated were carried out in MCF-7 and A-549 cell lines, which revealed significantly good activity. The results of anticancer activity studies showed that the cytotoxic activity of the Yb-complex was increased when encapsulated with nanocarriers. Based on biological applications of the Yb-complex, it can be concluded that this complex and its nanocarriers can act as novel anticancer and antimicrobial candidates. The biological applications of Yb-complexes including anticancer, antimicrobial and DNA cleavage ability, and their interaction with FS-DNA and BSA were examined.![]()
Collapse
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory
- AlZahra Hospital
- Isfahan University of Medical Sciences
- Iran
- Young Researchers and Elite Club, Najafabad Branch
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
| |
Collapse
|
40
|
Asadpour S, Aramesh-Boroujeni Z, Jahani S. In vitro anticancer activity of parent and nano-encapsulated samarium(iii) complex towards antimicrobial activity studies and FS-DNA/BSA binding affinity. RSC Adv 2020; 10:31979-31990. [PMID: 35518188 PMCID: PMC9056537 DOI: 10.1039/d0ra05280a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
Based on the potential anticancer properties of lanthanide complexes, the anticancer activity of the Sm(iii) complex containing a 2,2′-bipyridine ligand (bpy) and its interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) were examined experimentally and by molecular docking in this paper. Absorption and fluorescence spectroscopic methods were used to define the thermodynamic parameters, binding constant (Kb), and the probable binding mechanism. It was concluded that the Sm complex interacts with FS-DNA through a minor groove with a Kb of 105 M−1. Also, the Kb for the BSA binding at 298 K was found to be 5.89 × 105 M−1, showing relatively a high tendency of the Sm complex to DNA and BSA. Besides, the Sm complex was docked to BSA and DNA by the autodock program. The results of the docking calculations were in good agreement with the experimental examinations. Additionally, the antifungal and antibacterial properties of this complex were investigated. The anticancer tests on the effect of the Sm complex, starch nano-encapsulation, and lipid nano-encapsulation in MCF-7 and A-549 cell lines were performed by the MTT method. It can be observed that the Sm complex and its nanocarriers presented a selective inhibitory effect on various cancer cell growths. The biological properties of the Sm-complex, such as its interaction with FS-DNA and BSA, anticancer, and antimicrobial activities were studied.![]()
Collapse
Affiliation(s)
- Saeid Asadpour
- Department of Chemistry
- Faculty of Sciences
- Shahrekord University
- Shahrekord 115
- Iran
| | - Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory
- AlZahra Hospital
- Isfahan University of Medical Sciences
- Iran
- Young Researchers and Elite Club
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| |
Collapse
|