1
|
Gao Q, He X, He L, Lin J, Wang L, Xie Y, Wu A, Li J. Hollow Cu 2-xSe-based nanocatalysts for combined photothermal and chemodynamic therapy in the second near-infrared window. NANOSCALE 2023; 15:17987-17995. [PMID: 37906209 DOI: 10.1039/d3nr03260d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chemodynamic therapy (CDT) and photothermal therapy (PTT) have gained popularity due to their non-invasive characteristics and satisfying therapeutic expectations. A Cu-based nanomaterial serving as a Fenton-like nanocatalyst for CDT together with a photothermal agent for simultaneous PTT seems to be a powerful strategy. In this work, the morphological effect of Cu2-xSe nanoparticles on CDT and PTT was systematically investigated. In particular, the hollow octahedral Cu2-xSe nanoparticles exhibited higher photothermal and chemodynamic performance than that of spherical or cubic Cu2-xSe nanoparticles in the second near-infrared (NIR-II) window. In addition, the octahedral Cu2-xSe nanoparticles were further loaded with the autophagy inhibitor chloroquine (CQ) and connected with the targeting neuropeptide Y ligand, and shown to work as a novel therapeutic platform (Cu2-xSe@CQ@NPY), holding an immense potential to achieve synergetic enhancement of CDT/PTT with a positive therapeutic outcome for breast cancer.
Collapse
Affiliation(s)
- Qianqian Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuelu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Le Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| |
Collapse
|
2
|
Shabatina TI, Vernaya OI, Shimanovskiy NL, Melnikov MY. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023; 15:pharmaceutics15041181. [PMID: 37111666 PMCID: PMC10141702 DOI: 10.3390/pharmaceutics15041181] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The development of antiviral treatment and anticancer theragnostic agents in recent decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles (INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast agents is one of the most promising applications of nanomedicine. Activation of MNPs during hyperthermia by an external alternating magnetic field is a promising method for targeted cancer therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals (either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and their application for plasmonic photothermal and photodynamic therapies have been extensively explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are presented in this review.
Collapse
Affiliation(s)
- Tatyana I Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Olga I Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Nikolay L Shimanovskiy
- Department of Molecular Pharmacology and Radiobiology, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
| |
Collapse
|
3
|
The effect of using albumin-perfluorohexane/cisplatin-magnetite nanoparticles produced by hydrothermal method against gastric cancer cells through combination therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
4
|
Spoială A, Ilie CI, Motelica L, Ficai D, Semenescu A, Oprea OC, Ficai A. Smart Magnetic Drug Delivery Systems for the Treatment of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050876. [PMID: 36903753 PMCID: PMC10004758 DOI: 10.3390/nano13050876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/01/2023]
Abstract
Cancer remains the most devastating disease, being one of the main factors of death and morbidity worldwide since ancient times. Although early diagnosis and treatment represent the correct approach in the fight against cancer, traditional therapies, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have some limitations (lack of specificity, cytotoxicity, and multidrug resistance). These limitations represent a continuous challenge for determining optimal therapies for the diagnosis and treatment of cancer. Cancer diagnosis and treatment have seen significant achievements with the advent of nanotechnology and a wide range of nanoparticles. Due to their special advantages, such as low toxicity, high stability, good permeability, biocompatibility, improved retention effect, and precise targeting, nanoparticles with sizes ranging from 1 nm to 100 nm have been successfully used in cancer diagnosis and treatment by solving the limitations of conventional cancer treatment, but also overcoming multidrug resistance. Additionally, choosing the best cancer diagnosis, treatment, and management is extremely important. The use of nanotechnology and magnetic nanoparticles (MNPs) represents an effective alternative in the simultaneous diagnosis and treatment of cancer using nano-theranostic particles that facilitate early-stage detection and selective destruction of cancer cells. The specific properties, such as the control of the dimensions and the specific surface through the judicious choice of synthesis methods, and the possibility of targeting the target organ by applying an internal magnetic field, make these nanoparticles effective alternatives for the diagnosis and treatment of cancer. This review discusses the use of MNPs in cancer diagnosis and treatment and provides future perspectives in the field.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Augustin Semenescu
- Departament of Engineering and Management for Transports, Faculty of Transports, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| |
Collapse
|
5
|
Effect of the Amount of Carbon in the Fe3O4@ZnO-C Nanocomposites on Its Structure and Magnetic Properties. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.10.362-367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Synthesis and characterization of structure magnetic properties of Fe3O4@ZnO- C nanocomposite have been done through the precipitation method. This study aimed to discover the effect of concentrations/thickness of carbon layer on crystal structure and magnetic properties of Fe3O4@ZnO-C nanocomposites. Fe3O4 and Fe3O4@ZnO were the samples used in the study, and variations in the amount of carbon were 0.2, 0.1, and 0.05 g. Nanocomposites were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Based on the results of XRD, it has been found that the crystal structure for Fe3O4 was cubic, while ZnO was hexagonal wurtzite. The addition of carbons to Fe3O4@ZnO caused a broadening of the diffraction peaks and a decrease in the degree of crystallinity. The bonds formed on Fe3O4@ZnO-C nanocomposites, i.e. Fe-O bonds indicated the formation of Fe3O4, Zn-O bonds showed the formation of ZnO and C-O, C-H, and O-H bonds revealed the presence of a carbon layer originated from glucose. The VSM results showed that the magnetic saturation decreased with increasing carbon mass. Overall, the carbon-coated nanocomposite material with a carbon mass variation of 0.2, 0.1, and 0.05 g showed superparamagnetic properties with a magnetic saturation of 18.23 emu/g, 19.33 emu/g and 22.05 emu/g, while for the coercive field of 92.29 Oe, 92.90 Oe and 89.60 Oe, respectively. Based on these characterization results, Fe3O4@ZnO-C nanocomposite materials can potentially be developed as biomedical materials, such as the materials for photothermal therapy for cancer cells.
Collapse
|
6
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
7
|
Sahoo P, Kundu S, Roy S, Sharma SK, Ghosh J, Mishra S, Mukherjee A, Ghosh CK. Fundamental understanding of the size and surface modification effects on r 1, the relaxivity of Prussian blue nanocube@ m-SiO 2: a novel targeted chemo-photodynamic theranostic agent to treat colon cancer. RSC Adv 2022; 12:24555-24570. [PMID: 36128364 PMCID: PMC9425834 DOI: 10.1039/d2ra03995h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
A targeted multimodal strategy on a single nanoplatform is attractive in the field of nanotheranostics for the complete ablation of cancer. Herein, we have designed mesoporous silica (m-SiO2)-coated Prussian blue nanocubes (PBNCs), functionalized with hyaluronic acid (HA) to construct a multifunctional PBNC@m-SiO2@HA nanoplatform that exhibited good biocompatibility, excellent photodynamic activity, and in vitro T 1-weighted magnetic resonance imaging ability (r 1 ∼ 3.91 mM-1 s-1). After loading doxorubicin into the as-prepared PBNC@m-SiO2@HA, the developed PBNC@m-SiO2@HA@DOX displayed excellent pH-responsive drug release characteristics. Upon irradiation with 808 nm (1.0 W cm-2) laser light, PBNC@m-SiO2@HA@DOX exhibited synergistic photodynamic and chemotherapeutic efficacy (∼78% in 20 minutes) for human colorectal carcinoma (HCT 116) cell line compared to solo photodynamic or chemotherapy. Herein, the chemo-photodynamic therapeutic process was found to follow the apoptotic pathway via ROS-mediated mitochondrion-dependent DNA damage with a very low cellular uptake of PBNC@m-SiO2@HA@DOX for the human embryonic kidney (HEK 293) cell line, illustrating its safety. Hence, it may be stated that the developed nanoplatform can be a potential theranostic agent for future applications. Most interestingly, we have noted variation in r 1 at each step of the functionalization along with size variation that has been the first time modelled on the basis of the Solomon-Bloembergen-Morgan theory considering changes in the defect crystal structure, correlation time, water diffusion rate, etc., due to varied interactions between PBNC and water molecules.
Collapse
Affiliation(s)
- Panchanan Sahoo
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute Giridih Jharkhand India
| | - Sudip Kundu
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| | - Shubham Roy
- Department of Physics, Jadavpur University Kolkata-700032 India
| | - S K Sharma
- Eko X-Ray & Imaging Institute 54, Jawaharlal Nehru Road Kolkata-700071 India
| | - Jiten Ghosh
- XRD and SEM Units, Materials Characterization and Instrumentation Division, CSIR-Central Glass and Ceramic Research Institute India
| | - Snehasis Mishra
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute Giridih Jharkhand India
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| |
Collapse
|
8
|
Facile synthesis of core–shell structured magnetic Fe 3O 4@SiO 2@Au molecularly imprinted polymers for high effective extraction and determination of 4-methylmethcathinone in human urine samples. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, a novel material of core–shell structured magnetic molecularly imprinted polymers (Fe3O4@SiO2@Au (FSA)-MIPs) was successfully prepared for the rapid and selective determination of 4-methylmethcathinone (mephedrone, 4-MMC). The adsorption capacity of FSA-MIPs is 34.7 mg·g−1 at 308 K, which is significantly higher than magnetic non-imprinted polymers profiting from the imprinting effect. The FSA-MIPs have a short equilibrium (20 min) and could be reused more than six times. Moreover, the selectivity coefficients of FSA-MIPs for 4-MMC, 3,4-dimethylmethcathinone, butylone, 4-ethylmethcathinone, acetylfentanyl, and methylene blue are 4.01, 5.65, 7.62, 12.30, and 20.87 respectively, further indicating the markedly enhanced binding selectivity of FSA-MIPs. As an adsorbent, the FSA-MIPs were successfully applied for effective extraction of 4-MMC in three human urine samples with the recovery rates ranging from 85.5–92.6%. The results confirmed that the FSA-MIPs have good prospects in the extraction and separation of synthetic cathinones, which is suitable for further application in the criminal sciences field.
Collapse
|
9
|
Immobilized Au nanoparticles on chitosan-biguanidine modified Fe3O4 nanoparticles and investigation of its anti-human lung cancer activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102697. [PMID: 34936918 DOI: 10.1016/j.pdpdt.2021.102697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Light-mediated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT) have been exploited as minimally invasive techniques for ablation of various tumors., Both modalities may eradicate tumors with minimal side effects to normal tissues and organs. Moreover, developments of light-mediated approaches using nanoparticles (NPs) and photosensitizer (PS) as diagnostic and therapeutic agents may have a crucial role in achieving successful cancer treatment. In recent years, novel nanoplatforms and strategies have been investigated to boost the therapeutic effect.. In this regard, gold, iron oxide, graphene oxide nanoparticles and hybrid nanocomposites have attracted attention.. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. In this review, we look into the basic principles of PTT and PDT with their strengths and limitations to treat cancers. We also will discuss light-based nanoparticles and their PTT and PDT applications in the preclinical and clinical translation. Also, recent advances and trends in this field will be discussed along with the clinical challenges of PTT and PDT.
Collapse
|
11
|
Fe3O4@Au@SiO2 Core–Shell Nanoparticles: Synthesis, Characterization, Investigations of Its Influence on Cell Lines Using a NIR Laser and an Alternating Magnetic Field. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02136-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Piorecka K, Kurjata J, Stanczyk WA. Nanoarchitectonics: Complexes and Conjugates of Platinum Drugs with Silicon Containing Nanocarriers. An Overview. Int J Mol Sci 2021; 22:9264. [PMID: 34502173 PMCID: PMC8430569 DOI: 10.3390/ijms22179264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022] Open
Abstract
The development in the area of novel anticancer prodrugs (conjugates and complexes) has attracted growing attention from many research groups. The dangerous side effects of currently used anticancer drugs, including cisplatin and other platinum based drugs, as well their systemic toxicity is a driving force for intensive search and presents a safer way in delivery platform of active molecules. Silicon based nanocarriers play an important role in achieving the goal of synthesis of the more effective prodrugs. It is worth to underline that silicon based platform including silica and silsesquioxane nanocarriers offers higher stability, biocompatibility of such the materials and pro-longed release of active platinum drugs. Silicon nanomaterials themselves are well-known for improving drug delivery, being themselves non-toxic, and versatile, and tailored surface chemistry. This review summarizes the current state-of-the-art within constructs of silicon-containing nano-carriers conjugated and complexed with platinum based drugs. Contrary to a number of other reviews, it stresses the role of nano-chemistry as a primary tool in the development of novel prodrugs.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (J.K.); (W.A.S.)
| | | | | |
Collapse
|
13
|
Chen Z, Fu Z, Li L, Ma E, Guo X. A Cost-Effective Nano-Sized Curcumin Delivery System with High Drug Loading Capacity Prepared via Flash Nanoprecipitation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:734. [PMID: 33803989 PMCID: PMC8001153 DOI: 10.3390/nano11030734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Flash nanoprecipitation (FNP) is an efficient technique for encapsulating drugs in particulate carriers assembled by amphiphilic polymers. In this study, a novel nanoparticular system of a model drug curcumin (CUR) based on FNP technique was developed by using cheap and commercially available amphiphilic poly(vinyl pyrrolidone) (PVP) as stabilizer and natural polymer chitosan (CS) as trapping agent. Using this strategy, high encapsulation efficiency (EE > 95%) and drug loading capacity (DLC > 40%) of CUR were achieved. The resulting CUR-loaded nanoparticles (NPs) showed a long-term stability (at least 2 months) and pH-responsive release behavior. This work offers a new strategy to prepare cost-effective drug-loaded NPs with high drug loading capacity and opens a unique opportunity for industrial scale-up.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Enguang Ma
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832000, China;
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832000, China;
| |
Collapse
|
14
|
Félix LL, Porcel JM, Aragón FFH, Pacheco-Salazar DG, Sousa MH. Simple synthesis of gold-decorated silica nanoparticles by in situ precipitation method with new plasmonic properties. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractWe describe a simple method for the preparation of gold-decorated silica (SiO2) nanoparticles (NPs) by the in situ precipitation method using simple BH4− ions reduction as a procedure, where BH4− ions are adsorbed onto PEI-functionalized SiO2 NPs for stabilizing and reducing gold ions onto PEI-SiO2 surface in water under ambient conditions. The result was 3-nm gold nanoshell NPs attached to SiO2 core (~ 75 nm) with a surface plasmon resonance (SPR) at ~ 680 nm. SPR band is associated with Au NP aggregates that arise from strong interparticle interaction. This is an alternative to the gold-seeding methods and the use of anionic gold species for the obtention of gold-decorated SiO2 NPs with an important red-shift in UV–Vis absorption and with potential applications in biosensors and photothermal therapy.
Collapse
|
15
|
Mohajer F, Mohammadi Ziarani G, Badiei A. New advances on Au-magnetic organic hybrid core-shells in MRI, CT imaging, and drug delivery. RSC Adv 2021; 11:6517-6525. [PMID: 35423209 PMCID: PMC8694923 DOI: 10.1039/d1ra00415h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Magnetic nanoparticles have been widely studied for various scientific and technological applications such as magnetic storage media, contrast agents for magnetic resonance imaging (MRI), biolabelling, separation of biomolecules, and magnetic-targeted drug delivery. A new strategy on Au-magnetic nano-hybrid core-shells was applied in MRI, CT imaging, and drug delivery, which has been received much attention nowadays. Herein, the designing of different magnetic core-shells with Au in MRI and cancer treatment is studied.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Physics and Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575
| | - Ghodsi Mohammadi Ziarani
- Department of Physics and Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| |
Collapse
|
16
|
Guo M, Huang K, Xu W. Third Generation Whole-Cell Sensing Systems: Synthetic Biology Inside, Nanomaterial Outside. Trends Biotechnol 2020; 39:S0167-7799(20)30262-6. [PMID: 34756379 DOI: 10.1016/j.tibtech.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 01/24/2023]
Abstract
Whole-cell sensing systems (WCSSs) are highly anticipated in the field of on-site detection. However, due to their low specificity, poor stability, and potential environmental problems, their commercial application is unrealistic. Recently, synthetic biology and nanomaterials have provided potential solutions to these problems, propelling WCSSs into a new generation. Synthetic biology provides a complete solution for the intelligent design and assembly of elements, modules, and genetic circuits. Nanomaterials covering the exterior of the cells provide stable protection, remote control capability, and catalytic ability for the WCSSs, and they can limit the horizontal transfer of genetic elements. These advancements enable personalized customization, intelligent control, and self-destruction in the next generation of cell sensors, promoting their industrialization.
Collapse
Affiliation(s)
- Mingzhang Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|