1
|
Jimenez-Chavez A, Pedroza-Herrera G, Betancourt-Reyes I, De Vizcaya Ruiz A, Masuoka-Ito D, Zapien JA, Medina-Ramirez IE. Aluminum enhances the oxidative damage of ZnO NMs in the human neuroblastoma SH-SY5Y cell line. DISCOVER NANO 2024; 19:36. [PMID: 38407768 PMCID: PMC10897122 DOI: 10.1186/s11671-024-03973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Bare and doped zinc oxide nanomaterials (ZnO NMs) are of great interest as multifunctional platforms for biomedical applications. In this study, we systematically investigate the physicochemical properties of Aluminum doped ZnO (AZO) and its bio-interactions with neuroblastoma (SH-SY5Y) and red blood (RBCs) cells. We provide a comprehensive chemical and structural characterization of the NMs. We also evaluated the biocompatibility of AZO NMs using traditional toxicity assays and advanced microscopy techniques. The toxicity of AZO NMs towards SH-SY5Y cells, decreases as a function of Al doping but is higher than the toxicity of ZnO NMs. Our results show that N-acetyl cysteine protects SH-SY5Y cells against reactive oxygen species toxicity induced by AZO NMs. ZnO and AZO NMs do not exert hemolysis in human RBCs at the doses that cause toxicity (IC50) in neuroblastoma cells. The Atomic force microscopy qualitative analysis of the interaction of SH-SY5Y cells with AZO NMs shows evidence that the affinity of the materials with the cells results in morphology changes and diminished interactions between neighboring cells. The holotomographic microscopy analysis demonstrates NMs' internalization in SH-SY5Y cells, changes in their chemical composition, and the role of lipid droplets in the clearance of toxicants.
Collapse
Affiliation(s)
- Arturo Jimenez-Chavez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Gladis Pedroza-Herrera
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Israel Betancourt-Reyes
- Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de México, Mexico, México
| | - Andrea De Vizcaya Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV-IPN), Ciudad de Mexico, México
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| |
Collapse
|
2
|
Huang S, Gao Y, Hu Y, Shen F, Jin Z, Cho Y. Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis. RSC Adv 2023; 13:29174-29194. [PMID: 37818271 PMCID: PMC10561672 DOI: 10.1039/d3ra05932d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
As cardiovascular disease stands as a global primary cause of mortality, there has been an urgent need for continuous and real-time heart monitoring to effectively identify irregular heart rhythms and to offer timely patient alerts. However, conventional cardiac monitoring systems encounter challenges due to inflexible interfaces and discomfort during prolonged monitoring. In this review article, we address these issues by emphasizing the recent development of the flexible, wearable, and comfortable piezoelectric passive sensor assisted by machine learning technology for diagnosis. This innovative device not only harmonizes with the dynamic mechanical properties of human skin but also facilitates continuous and real-time collection of physiological signals. Addressing identified challenges and constraints, this review provides insights into recent advances in piezoelectric cardiac sensors, from devices to circuit systems. Furthermore, this review delves into the integration of machine learning technologies, showcasing their pivotal role in facilitating continuous and real-time assessment of cardiac status. The synergistic combination of flexible piezoelectric sensor design and machine learning holds substantial potential in automating the detection of cardiac irregularities with minimal human intervention. This transformative approach has the power to revolutionize patient care paradigms.
Collapse
Affiliation(s)
- Shunyao Huang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yujia Gao
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yian Hu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Fengyi Shen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Zhangsiyuan Jin
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yuljae Cho
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| |
Collapse
|
3
|
Chen Z, Huang J, Yang M, Liu X, Zheng Z, Huo N, Han L, Luo D, Li J, Gao W. Bi 2O 2Se Nanowire/MoSe 2 Mixed-Dimensional Polarization-Sensitive Photodiode with a Nanoscale Ultrafast-Response Channel. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37335909 DOI: 10.1021/acsami.3c05283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
In recent years, polarization-sensitive photodiodes based on one-dimensional/two-dimensional (1D/2D) van der Waals (vdWs) heterostructures have garnered significant attention due to the high specific surface area, strong orientation degree of 1D structures, and large photo-active area and mechanical flexibility of 2D structures. Therefore, they are applicable in wearable electronics, electrical-driven lasers, image sensing, optical communication, optical switches, etc. Herein, 1D Bi2O2Se nanowires have been successfully synthesized via chemical vapor deposition. Impressively, the strongest Raman vibration modes can be achieved along the short edge (y-axis) of Bi2O2Se nanowires with high crystalline quality, which originate from Se and Bi vacancies. Moreover, the Bi2O2Se/MoSe2 photodiode designed with type-II band alignment demonstrates a high rectification ratio of 103. Intuitively, the photocurrent peaks are mainly distributed in the overlapped region under the self-powered mode and reverse bias, within the wavelength range of 400-nm. The resulting device exhibits excellent optoelectrical performances, including high responsivities (R) and fast response speed of 656 mA/W and 350/380 μs (zero bias) and 17.17 A/W and 100/110 μs (-1 V) under 635 nm illumination, surpassing the majority of reported mixed-dimensional photodiodes. The most significant feature of our photodiode is its highest photocurrent anisotropic ratio of ∼2.2 (-0.8 V) along the long side (x-axis) of Bi2O2Se nanowires under 635 nm illumination. The above results reveal a robust and distinctive correlation between structural defects and polarized orientation for 1D Bi2O2Se nanowires. Furthermore, 1D Bi2O2Se nanowires appear to be a great potential candidate for high-performance rectifiers, polarization-sensitive photodiodes, and phototransistors based on mixed vdWs heterostructures.
Collapse
Affiliation(s)
- Zecheng Chen
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Guangzhou 528225, P. R. China
| | - Jianming Huang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Guangzhou 528225, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Guangzhou 528225, P. R. China
| | - Xiao Liu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Guangzhou 528225, P. R. China
| | - Zhaoqiang Zheng
- College of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Guangzhou 528225, P. R. China
| | - Lixiang Han
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Guangzhou 528225, P. R. China
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Guangzhou 528225, P. R. China
| |
Collapse
|
4
|
Feng W, Tie X, Duan X, Yan S, Fang S, Wang T, Sun P, Gan L. Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
5
|
Alwany AB, Youssef GM, Saleh EE, Algradee MA, Alnakhlani A, Hassan B. Effect of lead doping on the structural, optical, and radiation shielding parameters of chemically synthesized ZnS nanoparticles. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2023; 34:233. [DOI: 10.1007/s10854-022-09647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 09/01/2023]
|
6
|
Bi3+/Ce3+ doped ZnO nanoparticles with enhanced photocatalytic and dielectric properties. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Sikdar MK, Singh A, Bhakta S, Sahoo M, Jha SN, Shukla DK, Kanjilal D, Sahoo PK. Modulation of intrinsic defects in vertically grown ZnO nanorods by ion implantation. Phys Chem Chem Phys 2022; 24:18255-18264. [PMID: 35876232 DOI: 10.1039/d2cp02514k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsic defects created by chemically inert gas (Xe) ion implantation in vertically grown ZnO nanorods are studied by optical and X-ray absorption spectroscopy (XAS). The surface defects produced due to dynamic sputtering by ion beams control the fraction of O and Zn with ion fluence, which helps in tuning the optoelectronic properties. The forbidden Raman modes related to Zn interstitials and oxygen vacancies are observed because of the weak Fröhlich interaction, which arises due to disruption of the long-range lattice order. The evolution of the lattice disorder is identified by O K-edge and Zn K-edge scans of XAS. The hybridization strength between the O 2p and Zn 4p states increases with ion fluence and modulates the impact of intrinsic defects. The ion irradiation induced defects also construct intermediate defects bands which reduce the optical bandgap. Density functional theory (DFT) calculations are used to correlate the experimentally observed trend of bandgap narrowing with the origin of electronic states related to Zn interstitial and O vacancy defects within the forbidden energy gap in ZnO. Our finding can be beneficial to achieve enhanced conductivity in ZnO by accurately varying the intrinsic defects through ion irradiation, which may work as a tuning knob to control the optoelectronic properties of the system.
Collapse
Affiliation(s)
- Mrinal K Sikdar
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni, Odisha - 752050, India.
| | - Avanendra Singh
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni, Odisha - 752050, India. .,Plasmonics and Perovskites Laboratory (PPL), Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, U.P., India
| | - Sourav Bhakta
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni, Odisha - 752050, India.
| | - Madhusmita Sahoo
- Thin Film and Coatings Section, Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - S N Jha
- Beamline Development and Application Section, BARC, Mumbai, 400085, India
| | - D K Shukla
- UGC DAE Consortium for Scientific Research, Indore - 452001, India
| | - D Kanjilal
- Inter-University Accelerator Centre, New Delhi 110 067, India
| | - Pratap K Sahoo
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni, Odisha - 752050, India.
| |
Collapse
|
8
|
Ghribi F, Khalifi N, Mrabet S, Ghiloufi I, Ţălu Ş, El Mir LM, da Fonseca Filho HD, Oliveira RMPB, Matos RS. Evaluation of the Structure–Micromorphology Relationship of Co10%–Alx Co-doped Zinc Oxide Nanostructured Thin Films Deposited by Pulsed Laser Using XRD and AFM. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:7717-7728. [DOI: 10.1007/s13369-022-06568-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
9
|
Rajasekaran M, Kumaresan P, Nithiyanantham S, Subramanian VK, Kalpana S. Photo-Electrocatalytic Applications of Pure and Bismuth Doped Zinc Oxide Thin Films by Spray Pyrolysis. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-021-00300-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Enhanced Photocatalytic Performance of One-Pot Flash Combustion Synthesized ZnO Nanoparticles: An Effect of Bi Doping. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Krishnamoorthy A, Sakthivel P, Devadoss I, Rajathi VMA. Role of Bi3+ ions on structural, optical, photoluminescence and electrical performance of Cd0.9-xZn0.1BixS QDs. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04681-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractIn this work, the Cd0.9-xZn0.1BixS QDs with different compositions of Bi3+ ions (0 ≤ x ≤ 0.05) were synthesized using a facile chemical route. The prepared QDs were characterized for analyzing the structural, morphological, elemental, optical, band gap, photoluminescence and electrochemical properties. XRD results confirmed that the Cd0.9-xZn0.1BixS QDs have a cubic structure. The mean crystallite size was increased from ~ 2 to ~ 5 nm for the increase of Bi3+ ions concentration. The optical transmittance behavior was decreased with increasing Bi3+ ions. The scanning electron microscope images showed that the prepared QDs possessed agglomerated morphology and the EDAX confirmed the presence of doped elements as per stoichiometry ratio. The optical band gap was slightly blue-shifted for initial substitution (Bi3+ = 1%) of Bi3+ ions and red-shifted for further increase of Bi3+ compositions. The optical band gap was ranged between 3.76 and 4.0 eV. High intense red emission was received for Bi3+ (1%) doped Zn:CdS QDs. The red emission peaks were shifted to a higher wavelength side due to the addition of Bi3+ ions. The PL emission on UV-region was raised for Bi3+ (1%) and it was diminished. Further, a violet (422 nm) and blue (460 nm) emission were received for Bi3+ ions doping. The cyclic voltammetry analysis showed that Bi3+ (0%) possessed better electrical properties than other compositions of Bi3+ ions.
Collapse
|