1
|
Vermeersch L, Wang T, Van den Brande N, De Vleeschouwer F, van Duin ACT. Computational Insights into Tunable Reversible Network Materials: Accelerated ReaxFF Kinetics of Furan-Maleimide Diels-Alder Reactions for Self-Healing and Recyclability. J Phys Chem A 2024; 128:10431-10439. [PMID: 39567488 DOI: 10.1021/acs.jpca.4c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In this study, ReaxFF molecular dynamics simulations were benchmarked and used to study the relative kinetics of the retro Diels-Alder reaction between furan and N-methylmaleimide. This reaction is very important for the creation of polymer networks with self-healing and recyclable properties, since they can be used as reversible linkers in the network. So far, the reversible Diels-Alder reaction has not yet been studied by using reactive molecular dynamics simulations. This work is, thus, the first step in simulating a covalent adaptable network (CAN) using Diels-Alder reactions as reversible linkers. For both endo and exo, the bond breaking in 40 product molecules was simulated using the bond boost method and the endo/exo ratio was evaluated. This ratio was benchmarked against density functional theory (DFT) and experimental results for a changing set of bond boost parameters. Given their importance to understand how the CAN performs, the effect of the addition of a polymer backbone and the effect of temperature were successfully simulated using our newly parametrized reactive force field.
Collapse
Affiliation(s)
- L Vermeersch
- Algemene Chemie & Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - T Wang
- Department of Mechanical Engineering, Pennsylvania State University (PSU), University Park, Pennsylvania 16802, United States
| | - N Van den Brande
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | | | - A C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University (PSU), University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Kim B, Lee J, Bae HY, Son SU, Song C. Supramolecular Phthalimide Networks Via Tandem Diels-Alder Reaction-Aromatization Using Biomass-Derived Furanic Dienes. Macromol Rapid Commun 2023; 44:e2200711. [PMID: 36281910 DOI: 10.1002/marc.202200711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/18/2022] [Indexed: 11/09/2022]
Abstract
The design and synthesis of phthalimide derivatives are important goals for applications in fields such as pharmaceutical science and optoelectronics. In the present study, a facile and convenient synthetic pathway (no heat or acid/catalyst needed) is devised to produce phthalimides from a biomass-derived furan by directly introducing an N-carbamate group at the C-2 position of the furan ring via thermal Curtius rearrangement. The electron-donating N-carbamate group increases the energy level of the highest occupied molecular orbital of the furan diene, resulting in a significant increase of the rate of the Diels-Alder reaction with maleimide compared to the conventional furfuryl furan. Interestingly, the Diels-Alder adduct smoothly undergoes aromatization (dehydration) to generate the phthalimide motif. It is shown that the biomass-derived phthalimides can produce supramolecular gels and act as sensors of basic anions like F- and CN- . The novel synthetic pathway to phthalimide derivatives from a biomass-derived furan can potentially be used to develop novel phthalimide motifs for a variety of applications.
Collapse
Affiliation(s)
- Byounghyun Kim
- Department of Chemistry, Sungkyunkwan University, (16419) 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Juhyen Lee
- Department of Chemistry, Sungkyunkwan University, (16419) 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, (16419) 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, (16419) 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, (16419) 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. Targeting Valuable Chemical Commodities: Hydrazine-mediated Diels-Alder Aromatization of Biobased Furfurals. CHEMSUSCHEM 2022; 15:e202201139. [PMID: 35833422 PMCID: PMC9804822 DOI: 10.1002/cssc.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
A hydrazine-mediated approach towards renewable aromatics production via Diels-Alder aromatization of readily available, biobased furfurals was explored as alterative to the more classical approaches that rely on reactive but uneconomical reduced dienes (e. g., 2,5-dimethylfuran). To enable cycloaddition chemistry with these otherwise unreactive formyl furans, substrate activation by N,N-dimethyl hydrazone formation was investigated. The choice of the reaction partner was key to the success of the transformation, and in this respect acrylic acid showed the most promising results in the synthesis of aromatics. This strategy allowed for selectivities up to 60 % for a complex transformation consisting of Diels-Alder cycloaddition, oxabridge opening, decarboxylation, and dehydration. Exploration of the furfural scope yielded generic structure-reactivity-stability relationships. The proposed methodology enabled the redox-efficient, operationally simple, and mild synthesis of renewable (p-disubstituted) aromatics of commercial importance under remarkably mild conditions.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| |
Collapse
|
4
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|
5
|
Rehman U, Mansha A, Zahid M, Asim S, Zahoor AF, Rehan ZA. Quantum mechanical modeling unveils the effect of substitutions on the activation barriers of the Diels–Alder reactions of an antiviral compound 7H-benzo[a]phenalene. Struct Chem 2022. [DOI: 10.1007/s11224-022-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022; 61:e202114720. [PMID: 35014138 PMCID: PMC9304315 DOI: 10.1002/anie.202114720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/21/2023]
Abstract
Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
7
|
Cioc R, Crockatt M, Van der Waal JC, Bruijnincx P. The Interplay between Kinetics and Thermodynamics in Furan Diels‐Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razvan Cioc
- Utrecht University: Universiteit Utrecht Chemistry NETHERLANDS
| | - Marc Crockatt
- TNO Sustainable Process and Energy Systems NETHERLANDS
| | | | - Pieter Bruijnincx
- Utrecht University Chemistry Universiteitsweg99Netherlands 3584 CG Utrecht NETHERLANDS
| |
Collapse
|
8
|
Dhawan S, Devnani H, Babu J, Singh H, Haider MA, Khan TS, Ingole PP, Haridas V. Supersensitive Detection of Anions in Pure Organic and Aqueous Media by Amino Acid Conjugated Ellman's Reagent. ACS APPLIED BIO MATERIALS 2021; 4:2453-2464. [PMID: 35014364 DOI: 10.1021/acsabm.0c01431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The last few decades witnessed a remarkable advancement in the field of molecular anion receptors. A variety of anion binding motifs have been discovered, and large number of designer molecular anion receptors with high selectivity are being reported. However, anion detection in an aqueous medium is still a formidable challenge as evident from only a miniscule of synthetic systems available in the literature. We, herein, report 5,5'-dithio-bis(2-nitrobenzoic acid) (Ellman's reagent) appended with amino acids as supersensitive anion sensors that can detect F- and H2PO4- ions in both aqueous as well as organic media. Interestingly, the sensors showed a dual response to anions, viz., chromogenic response in organic medium and electrochemical response in aqueous solutions. Various spectroscopic techniques such as UV-vis and 1H NMR are used to investigate the binding studies in acetonitrile, whereas electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) are employed to explore the anion binding in water. The host-guest complex stoichiometry and binding constants are calculated using the BindFit software. The geometry of host-guest complex has been optimized by the density functional theory (DFT) method. These molecules are versatile sensors since these function in both water and acetonitrile with extremely low limit of detection (LOD) up to 0.07 fM and limit of quantification (LOQ) up to 0.23 fM. To our knowledge, the present system is the first example of a sensor that can detect the lowest concentration of anions in water quantitatively. The minimalistic design strategy presented here opens up the innumerable possibilities for designing dual anion sensors in a one fell swoop.
Collapse
Affiliation(s)
- Sameer Dhawan
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Harsha Devnani
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Jisha Babu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - M Ali Haider
- Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Tuhin S Khan
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|