1
|
Vijayakumar M, Małecki JG, Nagaraju DH, Keri RS, Budagumpi S. Engineering the Coordination Environment in the Silver(I)- and Ruthenium(II)- N-Heterocyclic Carbene Complexes in Instigating the Electrocatalytic Hydrogen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39482563 DOI: 10.1021/acs.langmuir.4c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The quest for cost-efficient and high-performance electrocatalysts towards electrocatalytic water splitting is a key and an interdisciplinary area of study. Considerable progress is being driven by developments in the field of energy research. In a fundamental study, we have synthesized NHC precursors (6 and 7) and corresponding metal-NHC complexes of silver(I)- (8 and 9) and ruthenium(II)- (10 and 11) of a N-heterocyclic carbene-based ligand type incorporating coumarins. These NHC precursors and metal-NHC complexes were characterized through various analytical and spectral techniques. The silver(I)-NHC complexes 8 and 9 displayed a linear coordination geometry with a center of inversion, which is evidenced by the single-crystal X-ray diffraction technique. Both the series of complexes were assessed for their efficacies in the hydrogen evolution reaction (HER). The results demonstrated that attributed to its peculiar coordination geometry, high electrical conductivity the silver(I)- and ruthenium(II)-NHC complexes exhibited exemplary electrocatalytic activity. Activities of the hydrogen evolution reaction on two differently modified electrode substrates with metal-NHC complexes have been studied. To attain the benchmark HER current density of 10 mA cm-2, in 1.0 M KOH, an overpotential of -375 to -527 mV vs RHE was required for the metal-NHC complexes. Based on the analysis of the Tafel slope values, the rate-determining step was the adsorption of hydrogen as investigated in the potential window. The molecular electrocatalyst 10 presented a superior stability and maintained the electrocatalytic activity for a duration of 18 h with complex 8 and 24 h with respect to complex 10 in 1.0 M KOH. Apace with these studies, hydrogen oxidation studies were examined in 0.5 M H2SO4 by a substantial current density at the platinum ring electrode. This research offers feasible guidance for developing organometallic-based molecular electrocatalysts with good electrocatalytic performance.
Collapse
Affiliation(s)
- Monica Vijayakumar
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Kanakapura, 5621 12 Bangalore, Karnataka, India
| | - Jan Grzegorz Małecki
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Doddahalli H Nagaraju
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore 560 064, India
| | - Rangappa Sangappa Keri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Kanakapura, 5621 12 Bangalore, Karnataka, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Kanakapura, 5621 12 Bangalore, Karnataka, India
| |
Collapse
|
2
|
Kumar Manna B, Samanta R, Kumar Trivedi R, Chakraborty B, Barman S. Hydrogen spillover inspired bifunctional Platinum/Rhodium Oxide-Nitrogen-Doped carbon composite for enhanced hydrogen evolution and oxidation reactions in base. J Colloid Interface Sci 2024; 670:258-271. [PMID: 38763022 DOI: 10.1016/j.jcis.2024.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The poor activity of Pt-based-catalysts for alkaline hydrogen oxidation/evolution reaction (HOR/HER) encourages scientific society to design an effective electrocatalyst to develop alkaline fuel cells/electrolyzers. Herein, platinum/rhodium oxide-nitrogen-doped carbon (Pt/Rh2O3-CNx) composite is prepared for alkaline HER and HOR inspired by hydrogen spillover. The HER performance of Pt/Rh2O3-CNx is ∼ 6 times higher than Pt/C. In HOR, Pt/Rh2O3-CNx possesses an exchange current density of 657.60 mA/mgmetal, which is ∼ 3.4 times higher than Pt/C. Hydrogen and hydroxyl binding energy (HBE and OHBE) contribute equally to alkaline HOR/HER. The experimental and theoretical evidence suggests that the enhanced HER and HOR activity of Pt/Rh2O3-CNx may be due to hydrogen spillover from Pt to Rh2O3. Small work function difference [0.08 eV] of the system suggested hydrogen-spillover is feasible, which has been justified by reaction-free energy calculations. We proposed that the dissociation of hydrogen (H2) and water (H2O) occurs at Pt to form Pt-adsorbed hydrogen species (Pt-Had). Then, some Had moves to Rh2O3 through hydrogen spillover and reacts with neighboring Had or adsorbed hydroxyl species (OHad) to form H2 or H2O, which enhances the HER and HOR activity, respectively. The role of water-metal-hydroxyl species in the electrical double layer was also demonstrated on alkaline HOR/HER. This work may help to design the hydrogen-spillover-based catalysts for several renewable energy technologies.
Collapse
Affiliation(s)
- Biplab Kumar Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajib Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ravi Kumar Trivedi
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Centre for High Energy Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India; High Pressure & amp, Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Shah SS, Albadrani A, Fettouhi M, Aziz MA, Helal A. Synthesis and Oxygen Evolution Reaction Application of a Co-Cd Based Bimetallic Metal-Organic Framework. Chem Asian J 2024; 19:e202301039. [PMID: 38324734 DOI: 10.1002/asia.202301039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
In the realm of renewable energy technologies, the development of efficient and durable electrocatalysts is paramount, especially for applications like electrochemical water splitting. This research focuses on synthesizing a novel bimetallic metal-organic framework (BMMOF11) using earth-abundant elements, cobalt (Co) and cadmium (Cd). BMMOF11 showcases a distinctive structure with distorted octahedral chains of CoO and CdO, linked by benzene tricarboxylic acid (BTC). Our study primarily investigates the electrocatalytic efficiency of BMMOF11, particularly in water oxidation reactions. For practical analysis, BMMOF11 was anchored onto nickel foam, forming BMMOF11/NF, to evaluate its electrocatalytic properties. Electrochemical testing revealed that BMMOF11/NF begins water oxidation at an onset potential of 1.62 V versus RHE, demonstrating high activity with a lower overpotential of 0.4 V to achieve a current density of 10 mA/cm2. Moreover, BMMOF11/NF maintained stable water splitting performance, sustaining a current density of approximately 70 mA/cm2 under a voltage of 1.9 V relative to RHE. These findings indicate that BMMOF11/NF is a promising candidate for large-scale electrochemical water splitting, offering a blend of high activity and stability.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Ahmed Albadrani
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammed Fettouhi
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Geetha BM, Yhobu Z, Monica V, Małecki JG, Nagaraju DH, Azam M, Al-Resayes SI, Budagumpi S. Coordination chemistry of silver(I), gold(I) and nickel(II) with bis N-heterocyclic carbenes: applications in electrocatalytic hydrogen evolution reaction. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- B. M. Geetha
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Zhoveta Yhobu
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - V. Monica
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | | | - D. H. Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore, India
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Saud I. Al-Resayes
- Department of Chemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
Wang P, Dai Y, Wang X, Ren X, Luo C. Boosting Hydrogen Evolution on MoS
2
/CNT Modified by Poly(sodium‐p–styrene sulfonate)
via
Proton Concentration in Acid Solution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengfei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| |
Collapse
|