Madhavan M, Shobana B, Pandiaraja D, Prakash P. An innovative experimental and mathematical approach in electrochemical sensing for mapping a drug sensor landscape.
NANOSCALE 2024;
16:7211-7224. [PMID:
38507273 DOI:
10.1039/d3nr06648g]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Our study delves into the examination of an electrochemical sensor through both experimentation and mathematical analysis. The sensor demonstrates the ability to identify a specific antipsychotic medication, namely Chlorpromazine Hydrochloride (CPH), even at incredibly low concentrations, reaching the picomolar level. The identification process relies on the utilization of a Glassy Carbon Electrode (GCE) that has been modified with a ceria-doped zirconia (CeO2/ZrO2) nanocomposite. The nanocomposite was synthesized using the co-precipitation technique and extensively characterized through various analytical methods. It is crucial to detect the presence of CPH as an overdose can result in hyperactivity and severe bipolar disorders among both children and adults. The average size of the nanocomposite was estimated to be 10 nm. The electrode surface area after CeO2/ZrO2 modification of the GCE was found to be 0.059 cm2, which was significantly higher than the electrode surface area of the bare GCE (0.0307 cm2). The limit of detection and limit of quantification for CPH were calculated to be 99.3 pM and 3.010 nM, respectively, with the linear dynamic range of CPH detection found to be between 0.10 and 1.90 μM. The modified sensor electrode was tested on human urine samples with good recoveries and exhibited high selectivity, repeatability, reproducibility, and long-term stability. The experimental voltammograms and the simulated stochastic voltammograms exhibited a fair amount of agreement. Examination of the experimental findings alongside analytical and numerical solutions enables a comprehensive analysis of the factors influencing the outcome of electrochemical measurements. The precise findings can be leveraged for the development of efficient sensing devices for medical diagnostics and environmental monitoring.
Collapse