1
|
Joshi P, Shinde A, Sudhiram S, Sarangi BR, Mani NK. Wearable threads for monitoring sanitizer quality using dye displacement assay. RSC Adv 2024; 14:37155-37163. [PMID: 39569111 PMCID: PMC11577342 DOI: 10.1039/d4ra04379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
This study employs zero-cost (≈0.01 $) and durable thread-based devices to evaluate the quality of simulated and commercial sanitizer samples through dye displacement assay (DDA). A diverse range of sanitizer compositions, including ethanol concentrations of 55%, 75%, and 95% (v/v), were analysed. This investigation encompasses an assessment of the marker type (Doms and Hauser brands) on the migration distance of the dye region marked on thread devices. Our results demonstrate a proportional increase in the migration distance of the dye with increasing ethanol concentrations due to a decrease in the coefficient of viscosity and solvation power of ethanol on dye molecules. Additionally, a field trial for the thorough assessment of commercial sanitizer quality using thread-based devices further underscores the efficacy of this methodology. A calibration plot for a braided thread with Doms marker dye provides a reliable means to quantitatively assess the ethanol content in different commercial sanitizer compositions. Our findings collectively highlight the significance of this innovative method as a valuable tool for quality control and assessment for public health and hygiene as well as for preparing us for another pandemic.
Collapse
Affiliation(s)
- Pratham Joshi
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
- Innotech Manipal, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Akhiya Shinde
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Sukanya Sudhiram
- Physical and Chemical Biology Laboratory, Department of Physics, Indian Institute of Technology Palakkad Kerala 678623 India
| | - Bibhu Ranjan Sarangi
- Physical and Chemical Biology Laboratory, Department of Physics, Indian Institute of Technology Palakkad Kerala 678623 India
- Biological Sciences and Engineering, Indian Institute of Technology Palakkad Kerala 678623 India
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
- Innotech Manipal, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| |
Collapse
|
2
|
Panicker S, Prabhu A, Sundarrajan B, Quadros BP, Mani NK. A wax chalk and self-heating paper-based analytical device (SH-PAD) for the detection of bisphenol A. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6264-6270. [PMID: 39212075 DOI: 10.1039/d4ay01245c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bisphenol A (BPA) is a synthetic xenoestrogen widely present in the environment, known for its toxicity, endocrine-disrupting nature, carcinogenicity, and mutagenic effects on living organisms. The detection of BPA is essential as it infiltrates the human body through food, water, dust and dermal contact. Conventional methods currently in use are inadequate for on-the-spot detection. Consequently, there is a pressing need to build an all-in-one device that can be quickly fabricated using readily available and cost-effective off-the-shelf materials for the detection of BPA. Firstly, we have leveraged wax chalk for fabricating hydrophobic barriers on paper, which offers a hydrophilic channel resolution of 1.64 mm ± 0.05 mm and also the ability to confine major aqueous solvents without leakage. The fabricated device was used to detect BPA using the Folin-Ciocalteu reagent and sodium carbonate (in the presence of heat). Secondly, we have developed a self-heating paper-based analytical device (SH-PAD) using masking tape, lamination paper and Whatman filter paper. This cost-effective approach (0.017$) is based on an exothermic reaction caused by sodium hydroxide and a small quantity of aluminium in the paper layers and can retain heat adequately for more than 5 minutes, addressing the challenge of external heat sources and enabling effective and rapid colorimetric detection of BPA using the Folin-Ciocalteu reagent and sodium carbonate. Both methods can detect up to 2 μg mL-1 in spiked water samples. This developed method's user-friendliness and cost-effectiveness make it a promising candidate for point-of-care diagnostics or detection, providing testing capabilities in areas with limited resources.
Collapse
Affiliation(s)
- Shekhar Panicker
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Innotech Manipal, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Anusha Prabhu
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Balachandar Sundarrajan
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Buena Peninnah Quadros
- Innotech Manipal, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Innotech Manipal, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Uttam I, Sudarsan S, Ray R, Chinnappan R, Yaqinuddin A, Al-Kattan K, Mani NK. A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays. Life (Basel) 2023; 14:38. [PMID: 38255653 PMCID: PMC10820215 DOI: 10.3390/life14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
This hypothesis demonstrates that the efficiency of loop-mediated isothermal amplification (LAMP) for nucleic acid detection can be positively influenced by the preconcentration of microbial cells onto hydrophobic paper surfaces. The mechanism of this model is based on the high affinity of microbes towards hydrophobic surfaces. Extensive studies have demonstrated that hydrophobic surfaces exhibit enhanced bacterial and fungal adhesion. By exploiting this inherent affinity of hydrophobic paper substrates, the preconcentration approach enables the adherence of a greater number of target cells, resulting in a higher concentration of target templates for amplification directly from urine samples. In contrast to conventional methods, which often involve complex procedures, this approach offers a simpler, cost-effective, and user-friendly alternative. Moreover, the integration of cell adhesion, LAMP amplification, and signal readout within paper origami-based devices can provide a portable, robust, and highly efficient platform for rapid nucleic acid detection. This innovative hypothesis holds significant potential for point-of-care (POC) diagnostics and field surveillance applications. Further research and development in this field will advance the implementation of this technology, contributing to improved healthcare systems and public health outcomes.
Collapse
Affiliation(s)
- Isha Uttam
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| | - Sujesh Sudarsan
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| | - Rohitraj Ray
- Department of BioSystems Science and Engineering (BSSE), Indian Institute of Science, CV Raman Rd, Bangalore 560012, Karnataka, India;
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| |
Collapse
|
4
|
Ray R, Rakesh A, Singh S, Madhyastha H, Mani NK. Hair and Nail-On-Chip for Bioinspired Microfluidic Device Fabrication and Biomarker Detection. Crit Rev Anal Chem 2023:1-27. [PMID: 38133962 DOI: 10.1080/10408347.2023.2291825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The advent of biosensors has tremendously increased our potential of identifying and solving important problems in various domains, ranging from food safety and environmental analysis, to healthcare and medicine. However, one of the most prominent drawbacks of these technologies, especially in the biomedical field, is to employ conventional samples, such as blood, urine, tissue extracts and other body fluids for analysis, which suffer from the drawbacks of invasiveness, discomfort, and high costs encountered in transportation and storage, thereby hindering these products to be applied for point-of-care testing that has garnered substantial attention in recent years. Therefore, through this review, we emphasize for the first time, the applications of switching over to noninvasive sampling techniques involving hair and nails that not only circumvent most of the aforementioned limitations, but also serve as interesting alternatives in understanding the human physiology involving minimal costs, equipment and human interference when combined with rapidly advancing technologies, such as microfluidics and organ-on-a-chip to achieve miniaturization on an unprecedented scale. The coalescence between these two fields has not only led to the fabrication of novel microdevices involving hair and nails, but also function as robust biosensors for the detection of biomarkers, chemicals, metabolites and nucleic acids through noninvasive sampling. Finally, we have also elucidated a plethora of futuristic innovations that could be incorporated in such devices, such as expanding their applications in nail and hair-based drug delivery, their potential in serving as next-generation wearable sensors and integrating these devices with machine-learning for enhanced automation and decentralization.
Collapse
Affiliation(s)
- Rohitraj Ray
- Department of Bioengineering (BE), Indian Institute of Science Bangalore, Bengaluru, Karnataka, India
| | - Amith Rakesh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sheetal Singh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|
5
|
Li W, Ma X, Yong YC, Liu G, Yang Z. Review of paper-based microfluidic analytical devices for in-field testing of pathogens. Anal Chim Acta 2023; 1278:341614. [PMID: 37709421 DOI: 10.1016/j.aca.2023.341614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
Pathogens cause various infectious diseases and high morbidity and mortality which is a global public health threat. The highly sensitive and specific detection is of significant importance for the effective treatment and intervention to minimise the impact. However, conventional detection methods including culture and molecular method gravely depend on expensive equipment and well-trained skilled personnel, limiting in the laboratory. It remains challenging to adapt in resource-limiting areas, e.g., low and middle-income countries (LMICs). To this end, low-cost, rapid, and sensitive detection tools with the capability of field testing e.g., a portable device for identification and quantification of pathogens, has attracted increasing attentions. Recently, paper-based microfluidic analytical devices (μPADs) have shown a promising tool for rapid and on-site diagnosis, providing a cost-effective and sensitive analytical approach for pathogens detection. The fast turn-round data collection may also contribute to better understanding of the risks and insights on mitigation method. In this paper, critical developments of μPADs for in-field detection of pathogens both for clinical diagnostics and environmental surveillance are reviewed. The future development, and challenges of μPADs for rapid and onsite detection of pathogens are discussed, including using the cross-disciplinary development with, emerging techniques such as deep learning and Internet of Things (IoT).
Collapse
Affiliation(s)
- Wenliang Li
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Xuanye Ma
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Yang-Chun Yong
- Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Zhenjiang, 212013, Jiangsu Province, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom.
| |
Collapse
|
6
|
Khan JU, Pathan MA, Sayyar S, Paull B, Innis PC. Tuning the electrophoretic separations on a surface-accessible and flexible fibre-based microfluidic devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1506-1516. [PMID: 36847496 DOI: 10.1039/d2ay01714h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrophoresis on textile fiber substrates provides a unique surface-accessible platform for the movement, separation and concentration of charged analytes. The method employs the inherently inbuilt capillary channels existing within textile structures, which can support electroosmotic and electrophoretic transport processes upon applying an electric field. Unlike confined microchannels in classical chip-based electrofluidic devices, the capillaries formed by the roughly oriented fibers within textile substrates can impact the reproducibility of the separation process. Here, we report an approach for precise experimental conditions affecting the electrophoretic separation of two tracer solutes, fluorescein (FL) and rhodamine B (Rh-B) on textile-based substrates. A Box-Behnken response surface design methodology has been used to optimise the experimental conditions and predict the separation resolution of a solute mixture using polyester braided structures. The magnitude of the electric field, sample concentration and sample volume are of primary importance to the separation performance of the electrophoretic devices. Here, we use a statistical approach to optimise these parameters to achieve rapid and efficient separation. While a higher potential was shown to be required to separate solute mixtures of increasing concentration and sample volume, this was counteracted by a reduced separation efficiency due to joule heating, which caused electrolyte evaporation on the unenclosed textile structure at electric fields above 175 V cm-1. Using the approach presented here, optimal experimental conditions can be predicted to limit joule heating and attain effective separation resolution without compromising the analysis time on simple and low-cost textile substrates.
Collapse
Affiliation(s)
- Jawairia Umar Khan
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia.
- Department of Fibre and Textile Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Institute for Biomedical Materials & Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Mirbaz Ali Pathan
- Electrical, Computer and Telecommunication Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, New South Wales 2500, Australia
| | - Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials. Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Peter C Innis
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
| |
Collapse
|
7
|
Parween S, Asthana A, Nahar P. Fundamentals of Image-Based Assay (IBA) System for Affordable Point of Care Diagnostics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Selvam G, Dheivasigamani T, Prabhu A, Mani NK. Embellishing 2-D MoS 2 Nanosheets on Lotus Thread Devices for Enhanced Hydrophobicity and Antimicrobial Activity. ACS OMEGA 2022; 7:24606-24613. [PMID: 35874217 PMCID: PMC9301725 DOI: 10.1021/acsomega.2c02337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herein, we report cellulose-based threads from Indian sacred Lotus (Nelumbo nucifera) of the Nymphaceae family embellished with MoS2 nanosheets for its enhanced hydrophobic and antimicrobial properties. MoS2 nanosheets synthesized by a coprecipitation method using sodium molybdate dihydrate (Na2MoO4·2H2O) and thioacetamide (CH3CSNH2) were used as a sourse for MoS2 particle growth with cellulose threads extracted from lotus peduncles. The size, crystallinity, and morphology of pure and MoS2-coated fibers were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). the XRD pattern of pure lotus threads showed a semicrystalline nature, and the threads@MoS2 composite showed more crystallinity than the pure threads. SEM depicts that pure lotus threads possess a smooth surface, and the MoS2 nanosheets growth can be easily identified on the threads@MoS2. Further, the presence of MoS2 nanosheets on threads was confirmed with EDX elemental analysis. Antimicrobial studies with Escherichia coli and Candida albicans reveal that threads@MoS2 have better resistance than its counterpart, i.e., pure threads. MoS2 sheets play a predominant role in restricting the wicking capability of the pure threads due to their enhanced hydrophobic property. The water absorbency assay denotes the absorption rate of threads@MoS2 to 80%, and threads@MoS2 shows no penetration for the observed 60 min, thus confirming its wicking restriction. The contact angle for threads@MoS2 is 128°, indicating its improved hydrophobicity.
Collapse
Affiliation(s)
- Govarthini
Seerangan Selvam
- Nano-crystal
Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu India
| | - Thangaraju Dheivasigamani
- Nano-crystal
Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu India
| | - Anusha Prabhu
- Microfluidics,
Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology,
Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal 576104, Karnataka India
| | - Naresh Kumar Mani
- Microfluidics,
Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology,
Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal 576104, Karnataka India
| |
Collapse
|
9
|
Yang T, Luo Z, Bewal T, Li L, Xu Y, Mahdi Jafari S, Lin X. When smartphone enters food safety: A review in on-site analysis for foodborne pathogens using smartphone-assisted biosensors. Food Chem 2022; 394:133534. [PMID: 35752124 DOI: 10.1016/j.foodchem.2022.133534] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Pathogens are one of the supreme threats for the public health around the world in food supply chain. The on-site monitoring is an emerging trend for screening pathogens during the food processing and preserving. Traditional analytical tools have been unable to satisfy the current demands. Smartphones have enormous potentials for achieving on-site detection of foodborne pathogens, with intrinsic advantages such as small size, high accessibility, fast processing speed, and powerful imaging capacity. This review aims to synthesize the current advances in smartphone-assisted biosensors (SABs) for sensing foodborne pathogens, and briefly put forward the problem that consist in the research. We present the role of nanotechnology and recognition modes targeting foodborne pathogens in SABs, and discuss the signal conversion platforms coupling with smartphone. The challenges and perspectives in SABs are also proposed. The smartphone analytics area is moving forward, and it much be subject to careful quality standards and validation.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tarun Bewal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
10
|
Latex-Based Paper Devices with Super Solvent Resistance for On-the-Spot Detection of Metanil Yellow in Food Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe following paper presents a construct for a paper-based device which utilizes latex as the hydrophobic material for the fabrication of its hydrophobic barrier, which was deposited onto the cellulose surface either by free-hand or stenciled drawing. This method demands the least amount of expertise and time from its use, enabling a simple and rapid fabrication experience. Several properties of the hydrophobic material were characterized, such as the hydro head and penetration rate, with the aim of assessing its robustness and stability. The presented hydrophobic barriers fabricated using this approach have a barrier width of 4 mm, a coating thickness of 208 µm, and a hydrophilic resolution of 446.5 µm. This fabrication modality boasts an excellent solvent resistance with regard to the hydrophobic barrier. These devices were employed for on-the-spot detection of Metanil Yellow, a banned food adulterant often used in curcumin and pigeon peas, within successful limits of detection (LOD) of 0.5% (w/w) and 0.25% (w/w), respectively. These results indicate the great potential this fabricated hydrophobic device has in numerous paper-based applications and other closely related domains, such as diagnostics and sensing, signalling its capacity to become commonplace in both industrial and domestic settings.
Collapse
|
11
|
Ray R, Prabhu A, Prasad D, Garlapati VK, Aminabhavi TM, Mani NK, Simal-Gandara J. Paper-based microfluidic devices for food adulterants: Cost-effective technological monitoring systems. Food Chem 2022; 390:133173. [PMID: 35594772 DOI: 10.1016/j.foodchem.2022.133173] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 01/14/2023]
Abstract
Analytical sciences have witnessed emergent techniques for efficient clinical and industrial food adulterants detection. In this review, the contributions made by the paper-based devices are highlighted for efficient and rapid detection of food adulterants and additives, which is the need of the hour and how different categories of techniques have been developed in the past decade for upgrading the performance for point-of-care testing. A simple strategy with an arrangement for detecting specific adulterants followed by the addition of samples to obtain well-defined qualitative or quantitative signals for confirming the presence of target species. The paper-based microfluidics-based technology advances and prospects for food adulterant detection are discussed given the high-demand from the food sectors and serve as a valued technology for food researchers working in interdisciplinary technological frontiers.
Collapse
Affiliation(s)
- Rohitraj Ray
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anusha Prabhu
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173234, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
12
|
Thakur A, Devi P. A Comprehensive Review on Water Quality Monitoring Devices: Materials Advances, Current Status, and Future Perspective. Crit Rev Anal Chem 2022; 54:193-218. [PMID: 35522585 DOI: 10.1080/10408347.2022.2070838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Water quality monitoring has become more critical in recent years to ensure the availability of clean and safe water from natural aquifers and to understand the evolution of water contaminants across time and space. The conventional water monitoring techniques comprise of sample collection, preservation, preparation, tailed by laboratory testing and analysis with cumbersome wet chemical routes and expensive instrumentation. Despite the high accuracy of these methods, the high testing costs, laborious procedures, and maintenance associated with them don't make them lucrative for end end-users and field testing. As the participation of ultimate stakeholders, that is, common man for water quality and quantity can play a pivotal role in ensuring the sustainability of our aquifers, thus it is essential to develop and deploy portable and user-friendly technical systems for monitoring water sources in real-time or on-site. The present review emphasizes here on possible approaches including optical (absorbance, fluorescence, colorimetric, X-ray fluorescence, chemiluminescence), electrochemical (ASV, CSV, CV, EIS, and chronoamperometry), electrical, biological, and surface-sensing (SPR and SERS), as candidates for developing such platforms. The existing developments, their success, and bottlenecks are discussed in terms of various attributes of water to escalate the essentiality of water quality devices development meeting ASSURED criterion for societal usage. These platforms are also analyzed in terms of their market potential, advancements required from material science aspects, and possible integration with IoT solutions in alignment with Industry 4.0 for environmental application.
Collapse
Affiliation(s)
- Anupma Thakur
- Materials Science and Sensor Application, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja Devi
- Materials Science and Sensor Application, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
|
14
|
Hasandka A, Singh AR, Prabhu A, Singhal HR, Nandagopal MSG, Mani NK. Paper and thread as media for the frugal detection of urinary tract infections (UTIs). Anal Bioanal Chem 2022; 414:847-865. [PMID: 34668042 PMCID: PMC8724062 DOI: 10.1007/s00216-021-03671-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Urinary tract infections (UTIs) make up a significant proportion of the global burden of disease in vulnerable groups and tend to substantially impair the quality of life of those affected, making timely detection of UTIs a priority for public health. However, economic and societal barriers drastically reduce accessibility of traditional lab-based testing methods for critical patient groups in low-resource areas, negatively affecting their overall healthcare outcomes. As a result, cellulose-based materials such as paper and thread have garnered significant interest among researchers as substrates for so-called frugal analytical devices which leverage the material's portability and adaptability for facile and reproducible diagnoses of UTIs. Although the field may be only in its infancy, strategies aimed at commercial penetration can appreciably increase access to more healthcare options for at-risk people. In this review, we catalogue recent advances in devices that use cellulose-based materials as the primary housing or medium for UTI detection and chart out trends in the field. We also explore different modalities employed for detection, with particular emphasis on their ability to be ported onto discreet casings such as sanitary products.
Collapse
Affiliation(s)
- Amrutha Hasandka
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ankita Ramchandran Singh
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anusha Prabhu
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Hardik Ramesh Singhal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M S Giri Nandagopal
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
16
|
Hasandka A, Prabhu A, Prabhu A, Singhal HR, Nandagopal M S G, Shenoy R, Mani NK. "Scratch it out": carbon copy based paper devices for microbial assays and liver disease diagnosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3172-3180. [PMID: 34169933 DOI: 10.1039/d1ay00764e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a facile paper-based microfluidic device fabrication technique leveraging off-the-shelf carbon paper for the deposition of hydrophobic barriers using a novel "stencil scratching" method. This exceedingly frugal approach (0.05$) requires practically no technical training to employ. Hydrophobic barriers fabricated using this approach offer a width of 3 mm and a hydrophilic channel width of 849 μm, with an ability to confine major aqueous solvents without leakage. The utility of the device is demonstrated by porting a cell viability assay showing a limit-of-detection (LOD) of 0.6 × 108 CFU mL-1 and bilirubin assay with human serum showing a detection range of 1.76-6.9 mg dL-1 and a limit-of-detection (LOD) of 1.76 mg dL-1. The intuitiveness and economic viability of the fabrication method afford it great potential in the field of point-of-care diagnostics geared towards providing testing infrastructure in resource-scarce regions globally.
Collapse
Affiliation(s)
- Amrutha Hasandka
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | | | | | | | | | | | | |
Collapse
|
17
|
Singhal HR, Prabhu A, Giri Nandagopal M, Dheivasigamani T, Mani NK. One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Prabhu A, Singhal H, Giri Nandagopal MS, Kulal R, Peralam Yegneswaran P, Mani NK. Knitting Thread Devices: Detecting Candida albicans Using Napkins and Tampons. ACS OMEGA 2021; 6:12667-12675. [PMID: 34056418 PMCID: PMC8154238 DOI: 10.1021/acsomega.1c00806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 05/14/2023]
Abstract
Reproducible and in situ microbial detection, particularly of microbes significant in urinary tract infections (UTIs) such as Candida albicans, provides a unique opportunity to bring equity in the healthcare outcomes of disenfranchised groups like women in low-resource settings. Here, we demonstrate a system to potentially detect vulvovaginal candidiasis by leveraging the properties of multifilament cotton threads in the form of microfluidic-thread-based analytical devices (μTADs) to develop a frugal microbial identification assay. A facile mercerization method using heptane wash to boost reagent absorption and penetration is also performed and is shown to be robust compared to other existing conventional mercerization methods. Furthermore, the twisted mercerized fibers are drop-cast with media consisting of l-proline β-naphthylamide, which undergoes hydrolysis by the enzyme l-proline aminopeptidase secreted by C. albicans, hence signaling the presence of the pathogen via simple color change with a limit of detection of 0.58 × 106 cfu/mL. The flexible and easily disposable thread-based detection device when integrated with menstrual hygiene products showed a detection time of 10 min using spiked vaginal discharge. The developed method boasts a long shelf life and high stability, making it a discreet detection device for testing, which provides new vistas for self-testing multiple diseases that are considered taboo in certain societies.
Collapse
Affiliation(s)
- Anusha Prabhu
- Department
of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Hardik Singhal
- Department
of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - M. S. Giri Nandagopal
- Department
of Mechanical Engineering, Indian Institute
of Technology, Kharagpur, Kharagpur 721302, India
| | - Reshma Kulal
- Department
of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prakash Peralam Yegneswaran
- Department
of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal
Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Naresh Kumar Mani
- Department
of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal
Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|