1
|
Guo X, Jiang H, Guo Y, Jia L, Jing X, Wu J. Subzero-temperature homogeneous liquid-liquid extraction for the stereoselective determination of chiral triadimefon and its metabolite in water, fruit juice, vinegar, and fermented liquor by HPLC. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5492-5499. [PMID: 37842813 DOI: 10.1039/d3ay01061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A novel method based on homogeneous liquid-liquid extraction with deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC) for the determination of chiral fungicide triadimefon (TF) and its metabolite triadimenol (TN) in water, fruit juice, vinegar, and fermented liquor was developed in this study. The method involved using deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC). This novel technique, known as subzero-temperature homogeneous liquid-liquid extraction (STHLLE), offers several advantages, including high efficiency, time-saving, low-cost, and eco-friendliness. The enantiomers of chiral TF and TN were simultaneously separated and quantified using HPLC coupled with a Daicel Chiralpak OD-RH column. Various experimental parameters such as DES composition and volume, freezing condition, salt concentration, and pH were optimized to enhance the recoveries of the target analytes. Under the optimized conditions, spiked recoveries of six enantiomers (i.e., S-TF, R-TF, SR-TN, RS-TN, SS-TN, and RR-TN) in the water, fruit juice, vinegar, and fermented liquor samples were 82.2-100.1% with relative standard deviations of 0.4-10.1%. The current method demonstrated a detection range of 0.03-0.06 mg L-1 in the target analytes. This established technique exhibits potential for efficient and precise extraction and quantification of the enantiomers of TF and TN in water phase samples.
Collapse
Affiliation(s)
- Xingle Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Haijuan Jiang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Yuqi Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Junxue Wu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
2
|
Jouybari TA, Jouybari HA, Hosseini F, Nesari M, Fattahi N. Evaluation of blood lead levels in opium addicts and healthy control group using novel deep eutectic solvent based dispersive liquid-liquid microextraction followed by GFAAS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24553-24561. [PMID: 36344888 DOI: 10.1007/s11356-022-23942-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Today, drug dealers and sellers add lead compounds to these substances to get more profit. As a result, drug users are heavily exposed to lead, and lead poisoning is clearly seen in most of them. Therefore, it is especially important to check the blood lead levels in these people. In this research, an efficient and eco-friendly pretreatment method was established by deep eutectic solvent for dispersive liquid-liquid microextraction (DES - DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) analysis. The selected hydrophilic deep eutectic solvent consists of l-menthol and (1S)-( +)-camphor-10-sulfonic acid (CSA) at a 5:1 molar ratio as a green solvent instead of traditional toxic organic solvents. Under the optimal extraction conditions, the introduced method exhibited good linearity with coefficient of determination (r2) 0.9975 and an acceptable linear range of 0.3-80 µg L-1. Accordingly, the detection limit was 0.1 µg L-1 (S/N = 3) for lead ions, and the high enrichment factor (240) was obtained. The proposed method was successfully applied to analysis lead ions in real blood samples, which is a promising technique for biological samples. The case samples were classified and analyzed based on age, duration of consumption, and type of substance. The results showed that there was no significant difference between blood lead levels in different age groups and different duration of use, while blood lead levels were higher in opium residue (shireh) users than in opium users.
Collapse
Affiliation(s)
- Toraj Ahmadi Jouybari
- Clinical Research Development Center, Imam Khomeini and Dr. Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Ahmadi Jouybari
- Infectious Disease and Tropical Medicine Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Hosseini
- Clinical Research Development Center, Imam Khomeini and Dr. Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Nesari
- Clinical Research Development Center, Imam Khomeini and Dr. Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Development of a pH-induced dispersive solid-phase extraction method using folic acid combined with dispersive liquid-liquid microextraction: application in the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples. ANAL SCI 2023; 39:23-31. [PMID: 36227555 DOI: 10.1007/s44211-022-00194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023]
Abstract
In this study, a new pH-induced dispersive solid-phase extraction method using folic acid has been proposed for the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples. For this purpose, at first, a specified amount of folic acid was dissolved in the sample solution containing the studied ions at pH 8.5. Then, by decreasing pH of the solution, solubility of folic acid reduced and its fine particles containing the analytes were produced. They were separated and dissolved in dimethylformamide. For more preconcentration, the developed procedure was combined with a dispersive liquid-liquid microextraction procedure. Finally, the extracted and enriched analytes were determined by flame atomic absorption spectrometry. The effect of important parameters on the extraction efficiency of the method such as pH, folic acid amount, the amount of complexing agent, dimethylformamide volume, ionic strength, and centrifugation conditions were studied. Under optimized conditions, the developed method showed linear ranges of 0.20-40 and 0.25-40 µg L-1 for Pb(II) and Cu(II) ions, respectively. Limits of detection of Pb(II) and Cu(II) were 0.07 and 0.08 µg L-1, respectively. The relative standard deviations (intra- and inter-day precisions) were between 3.8 and 5.4%. Accuracy of the proposed method was studied by determination of the analytes concentrations in a certified reference material; SPS-WW2 Batch 108. Efficiency of the proposed procedure was evaluated by analyzing Pb(II) and Cu(II) ions in various water and fruit juice samples.
Collapse
|
4
|
Jiang H, Huang X, Xue H, Wang M, Qi Y, Jia L, Jing X. Switchable deep eutectic solvent‐based homogenous liquid–liquid microextraction combined with high‐performance liquid chromatography–diode‐array detection for the determination of the chiral fungicide mefentrifluconazole in water, fruit juice, and fermented liquor. Chirality 2022; 34:968-976. [DOI: 10.1002/chir.23445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Haijuan Jiang
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Xin Huang
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Haoyue Xue
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Min Wang
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Yanli Qi
- Shanxi Center for Testing of Functional Agro‐Products Shanxi Agricultural University Taiyuan China
| | - Liyan Jia
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Xu Jing
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| |
Collapse
|
5
|
Pasupuleti RR, Lee CH, Osborne PG, Wu MT, Ponnusamy VK. Rapid green analytical methodology for simultaneous biomonitoring of five toxic areca nut alkaloids using UHPLC-MS/MS for predicting health hazardous risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126923. [PMID: 34449334 DOI: 10.1016/j.jhazmat.2021.126923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/31/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Areca nut (AN) is a fundamental component of betel quid (BQ), an addictive and carcinogenic mixture chewed by hundreds of millions of people in India-Asia-Pacific. Chewing of BQ is associated with oral cancers due to specific carcinogenic alkaloids (arecaidine, guvacine, guvacoline, arecoline, N-Nitrosoguvacoline) in AN. To predict the hazardous health risks of short and long-term chewing of BQ, it is crucial to identify five toxic AN alkaloids in saliva and urine of BQ chewers. This study reports a green analytical methodology comprising in-syringe assisted vortex-induced salt-enhanced liquid-liquid microextraction coupled with ultra-HPLC-MS/MS for simultaneous biomonitoring of five AN alkaloids in saliva and urine. The analytical method validation results exhibited good linearities between 0.05 and 1000 ng mL-1 with r2 > 0.9930. The detection and quantification limits were between 0.01 and 1.5 and 0.05-5 ng mL-1. Relative recoveries ranged between 87.9% and 110.1% with RSD < 9.1% for saliva samples, 81.5-115.1% with RSD < 9.7% for urine samples. The results indicated the successful identification and real-time monitoring of concentrations of five target AN alkaloids in saliva and urine of BQ chewers and demonstrated the utility of this technique as an efficient analytical protocol for routine biomonitoring of levels of toxic AN alkaloids from BQ chewers and to predict the exposure level and its harmful health risk.
Collapse
Affiliation(s)
- Ragavendra Rao Pasupuleti
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Peter G Osborne
- Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ming-Tsang Wu
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Ph.D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, Taiwan.
| |
Collapse
|
6
|
Peng R, Le J, Yang SL, Cheng JR, Li Y, Wang ST. Cold-induced phase separation for the simple and reliable extraction of sex hormones for subsequent LC-MS/MS analysis. J Lipid Res 2022; 63:100158. [PMID: 34863861 PMCID: PMC8953666 DOI: 10.1016/j.jlr.2021.100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sex hormones, including androgens, estrogens, and progestogens, are important biomarkers for various diseases. Quantification of sex hormones is typically conducted by LC-MS/MS. At present, most methods require liquid-liquid extraction or solid phase extraction for sample preparation. However, these pretreatments are prone to compromise LC-MS/MS throughput. To improve on the current standard practices, we investigated cold-induced phase separation for sex hormone extraction. After protein precipitation with acetonitrile and adjusting the solution constitution with water, samples were stored at -30°C for 10 min to generate two distinct phases: an acetonitrile-rich layer on top of a water-rich layer. During this process, the hydrophobic sex hormones spontaneously separate into the upper layer. This simple and reliable cold-induced phase separation-based LC-MS/MS methodology was used here to simultaneously detect estrone, estradiol, estriol, testosterone, androstenedione, dehydroepiandrosterone, progesterone, and 17-hydroxyprogesterone in serum. Validation of this method indicated satisfactory performance, including acceptable linearity, accuracy, precision, and tractability. Compared with the mainstream liquid-liquid extraction-based method, this new method exhibits significant progress in throughput, which shortens the time cost of sample preparation from 90 to 40 min. We propose that this method can be an excellent alternative for sex hormone analysis in routine clinical laboratories.
Collapse
Affiliation(s)
- Rui Peng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juan Le
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shu-Lin Yang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing-Ru Cheng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shao-Ting Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
7
|
Musarurwa H, Tavengwa NT. Homogenous liquid-liquid micro-extraction of pollutants in complex matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Hu S, Zhao M, Wang Z, Yang J, Chen D, Yan P. Development of a pH-dependent homogeneous liquid-liquid extraction by cold-induced phase separation in acetonitrile/water mixtures for determination of quinolone residues in animal-derived foods. J Chromatogr A 2021; 1649:462235. [PMID: 34038778 DOI: 10.1016/j.chroma.2021.462235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/15/2022]
Abstract
A simple extraction procedure coupled with liquid chromatography-Q Orbitrap high resolution mass spectrometry (LC-Q Orbitrap HRMS) for the determination of 19 quinolones in animal-derived foods (pork, fish, egg and milk) has been developed. Sample preparation is based on homogeneous liquid-liquid extraction at pH > 9 using water-miscible acetonitrile with cold-induced phase separation. The procedure allowed one-step enrichment and cleanup of all the 19 quinolones with different logP properties to lower aqueous phase, which eliminated the process of preconcentration and re-dissolution for sample solution. Furthermore, an adsorption phenomenon was observed between conventional borosilicate glass injection vials and most of quinolones. In detection analysis, a scheduled variable full scan strategy was performed to improve detection performance in Q Orbitrap HRMS. Under optimal conditions, a superior limit of quantitation (0.028-0.192 μg/kg) in animal-derived foods was achieved using this proposed method. Lastly, this method was validated and applied successfully in real samples.
Collapse
Affiliation(s)
- Shuping Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhongle Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Jiaying Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, China.
| | - Pengcheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|