1
|
Cot-Auriol M, Virot M, Dumas T, Diat O, Le Goff X, Moisy P, Nikitenko SI. Ultrasonically controlled synthesis of UO 2+x colloidal nanoparticles. Dalton Trans 2023; 52:2135-2144. [PMID: 36722900 DOI: 10.1039/d2dt03721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Actinide colloids and nanoparticles (NPs) currently constitute a topic of strong interest due to their potential role in advanced nuclear energetics and the environmental migration of radioactivity. A better understanding of the physico-chemical properties of nanoscale actinide oxides requires robust synthesis approaches. In this work, UO2+x NPs were successfully prepared by sonochemistry from U(IV) solutions previously stabilised in a hydrochloric medium (20 kHz, 65 °C, Ar/(10%)CO). Colloidal suspensions were found to be composed of crystalline and spherical NPs showing a UO2-like structure and measuring 18.0 ± 0.1 nm (SAXS, HR-TEM and PXRD techniques). In comparison with the controlled hydrolysis approach used as a reference, sonochemistry appears to be a simple and original synthesis route providing larger, better defined and more crystalline UO2+x NPs with a narrower size distribution. These well-defined NPs offer new opportunities for the preparation of reference actinide materials devoted to fundamental, technological and environmental studies.
Collapse
Affiliation(s)
| | - Matthieu Virot
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Xavier Le Goff
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | | |
Collapse
|
2
|
Multiwavelength spectrophotometric-thermodynamic studies of complexation reactions of newly synthesized triazenes with Hg2+, Pb2+, Zn2+, and Cd2+ in MeOH, EtOH, DMF, and DMSO. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Cha W, Park TH, Park JH. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The field of radiochemistry in the Republic of Korea has expanded greatly over the last three decades to meet the rapid growth of technological demands in various areas such as nuclear energy and nuclear technologies for human health and environmental protection. Major research activities, which were initially centered at the Korea Atomic Energy Research Institute (KAERI), have gradually spread to major universities and the commercial sector. In this review, progress and recent research trends in nuclear and radiochemistry in Korea are summarized. The main research outcomes achieved by KAERI scientists are highlighted, with emphasis on basic actinide chemistry in nuclear fuel cycles, the radioanalytical chemistry of various radionuclides from radioactive waste and the environment, and medical radionuclide production. In addition, recent efforts to promote radiochemical education and future perspectives are briefly outlined.
Collapse
Affiliation(s)
- Wansik Cha
- Nuclear Chemistry Research Laboratory , Korea Atomic Energy Research Institute , 989-111 Daedeok-daero, Yuseong-gu , Daejeon 34057 , Republic of Korea
| | - Tae-Hong Park
- Radioactive Waste Chemical Analysis Center , Korea Atomic Energy Research Institute , 989-111 Daedeok-daero, Yuseong-gu , Daejeon 34057 , Republic of Korea
| | - Jeong Hoon Park
- Accelerator Radioisotope Development Laboratory , Korea Atomic Energy Research Institute , 989-111 Daedeok-daero, Yuseong-gu , Daejeon 34057 , Republic of Korea
| |
Collapse
|