1
|
Meng T, Liu X, Peng Y, Lei H, Li Z, Chaleawlert-Umpon S, Dai Y, Zhao K, Li L. Fluorine Incorporation for Enhanced Gas Separation Performance in Porous Organic Polymers: Investigating Reaction Pathways and Pore Structure Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40190-40198. [PMID: 39012769 DOI: 10.1021/acsami.4c06250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The precise control of pore structures in porous organic polymer (POP) materials is of paramount importance in addressing a wide range of challenges associated with gas separation processes. In this study, we present a novel approach to optimize the gas separation performance of POPs through the introduction of fluorine groups and figure out an important factor of reaction decision that whether the AlCl3-catalyzed polymerization is Scholl reaction or Friedel-Crafts alkylation. In the chloroform system, the steric hindrance of function groups could make direct coupling between the benzene rings difficult, which would lead to part solvent knitting (Friedel-Crafts alkylation) instead. The fluorinated polymers show enhanced surface area and pore size characteristics. Notably, the fluorinated polymers exhibited significantly improved adsorption and separation performance for SF6, as evidenced by an ideal adsorbed solution theory selectivity (SF6/N2, v: v = 50:50, 273 K) increase of 75.0, 668.8, and 502.8% compared to the nonfluorinated POPs. These findings highlight the potential of fluorination as a strategy for tailoring the properties of POP materials for advanced gas separation applications.
Collapse
Affiliation(s)
- Timur Meng
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xianhao Liu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuyue Peng
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Hongliang Lei
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhiyi Li
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Saowaluk Chaleawlert-Umpon
- National Nanotechnology Center, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Yutong Dai
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Kaige Zhao
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lina Li
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
2
|
Liu X, Timur M, Peng Y, Yu J, Li L. Synthesis of carbon quantum dots/porous aromatic frameworks (CQDs/PAF-45) composites and their enhanced photocatalytic performance. NANOTECHNOLOGY 2024; 35:225601. [PMID: 38387092 DOI: 10.1088/1361-6528/ad2c59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Modification and functionalization of porous aromatic framework (PAF) materials have emerged as crucial research directions in various fields. In this study, we employed a hydrothermal method to synthesize a carbon quantum dots (CQDs) solution. By loading different amounts of CQDs onto the surface of PAF-45 material through ultrasonic and hydrothermal treatments, we successfully formed CQDs/PAF-45 composite materials. The introduction of CQDs effectively transformed the hydrophobic nature of PAF-45 into a hydrophilic material, thereby overcoming the challenge of achieving efficient contact between PAF catalysts and reactants in aqueous solutions. In the photocatalytic degradation experiments of Rhodamine B (RhB), tetracycline, CQDs/PAF-45 composite materials surpassed that of the pristine PAF-45 material. Notably, the 1 wt% CQDs/PAF-45 composite material exhibited the highest photocatalytic activity, with degradation efficiencies for Rhodamine B, tetracycline, and phenol approximately 1.4 times, 1.5 times and 1.5 times higher than those of the PAF-45 material, respectively.
Collapse
Affiliation(s)
- Xianhao Liu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, People's Republic of China
| | - Meng Timur
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, People's Republic of China
| | - Yuyue Peng
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, People's Republic of China
| | - Jinsheng Yu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, People's Republic of China
| | - Lina Li
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, People's Republic of China
| |
Collapse
|
3
|
Li XL, Zhao L, Wang ZH, Song TS, Guo T, Xie JJ. Core-shell "loading-type" nanomaterials enabling glucometer readout for portable and sensitive detection of p-aminophenol in real samples. Mikrochim Acta 2024; 191:127. [PMID: 38334844 DOI: 10.1007/s00604-024-06204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
A one-target-many-trigger signal model sensing strategy is proposed for quickly, sensitive and on-site detection of the environmental pollutant p-aminophenol (PAP) by use of a commercial personal glucose meter (PGM) for signal readout with the core-shell "loading-type" nanomaterial MSNs@MnO2 as amplifiable nanoprobes. In this design, the mesoporous silica nanoparticles (MSNs) nanocontainer with entrapped signal molecule glucose is coated with redoxable manganese dioxide (MnO2) nanosheets to form the amplifiable nanoprobes (Glu-MSNs@MnO2). When encountered with PAP, the redox reaction between the MnO2 and PAP can induce the degradation of the outer layer of MSNs@MnO2, liberating multiple copies of the loaded glucose to light up the PGM signal. Owing to the high loading capability of nanocarriers, a "one-to-many" relationship exists between the target and the signal molecule glucose, which can generate adequate signal outputs to achieve the requirement of on-site determination of environmental pollutants. Taking advantage of this amplification mode, the developed PAP assay owns a dynamic linear range of 10.0-400 μM with a detection limit of 2.78 μM and provides good practical application performance with above 96.7 ± 4.83% recovery in environmental water and soil samples. Therefore, the PGM-based amplifiable sensor for PAP proposed can accommodate these requirements of environment monitoring and has promising potential for evaluating pollutants in real environmental samples.
Collapse
Affiliation(s)
- Xiang-Ling Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Zi-Heng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| | - Jing Jing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
4
|
Zhou Y, Zhang X, Deng J, Li C, Sun K, Luo X, Yuan S. Adsorption and mechanism study for phenol removal by 10% CO 2 activated bio-char after acid or alkali pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119317. [PMID: 37857218 DOI: 10.1016/j.jenvman.2023.119317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
The development of an efficient bio-char used to remove phenol from wastewater holds great importance for environmental protection. In this work, wheat straw bio-char (BC) was acid-washed by HF and activated at 900 °C with 10% CO2 to obtain bio-char (B-Ⅲ-0.1D900). Adsorption experiments revealed that B-Ⅲ-0.1D900 achieved a remarkable phenol removal efficiency of 90% within 40 min. Despite its relatively low specific surface area of 492.60 m2/g, it exhibited a high maximum adsorption capacity of 471.16 mg/g. Furthermore, B-Ⅲ-0.1D900 demonstrated a good regeneration capacity for at least three cycles (90.71%, 87.54%, 84.36%). It has been discovered that HF washing, which removes AAEM and exposes unsaturated functional groups, constitutes one of the essential prerequisites for enhancing CO2 activation efficiency at high temperatures. After 10% CO2 activation, the mesoporous structure exhibited substantial development, facilitating enhanced phenol infiltration into the pores when compared to untreated BC. The increased branching of the bio-char culminated in a more complete aromatic system, which enhances the π-π forces between the bio-char and the phenol. The presence of tertiary alcohol structure enhances the hydrogen bonding forces, thereby promoting intermolecular multilayer adsorption of phenol. With the combination of various forces, B-Ⅲ-0.1D900 has a good removal capacity for phenol. This work provides valuable insights into the adsorption of organic pollutants using activated bio-char.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaoguo Zhang
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Jin Deng
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Chun Li
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Keyuan Sun
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaodong Luo
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Shenfu Yuan
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China.
| |
Collapse
|
5
|
Investigation of photocatalytic-proxone process performance in the degradation of toluene and ethyl benzene from polluted air. Sci Rep 2023; 13:4000. [PMID: 36899090 PMCID: PMC10006189 DOI: 10.1038/s41598-023-31183-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
In this study, toluene and ethylbenzene were degraded in the photocatalytic-proxone process using BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite. The simultaneous presence of ozone and hydrogen peroxide is known as the proxone process. Nanocomposite Synthesis was carried out using the solvothermal method. Inlet airflow, ozone concentrations, H2O2 concentrations, relative humidity, and initial pollutants concentrations were studied. The nanocomposite was successfully synthesized based on FT-IR, BET, XRD, FESEM, EDS element mapping, UV-Vis spectra and TEM analysis. A flow rate of 0.1 L min-1, 0.3 mg min-1 of ozone, 150 ppm of hydrogen peroxide, 45% relative humidity, and 50 ppmv of pollutants were found to be optimal operating conditions. Both pollutants were degraded in excess of 95% under these conditions. For toluene and ethylbenzene, the synergistic of mechanisms effect coefficients were 1.56 and 1.76, respectively. It remained above 95% efficiency 7 times in the hybrid process and had good stability. Photocatalytic-proxone processes were evaluated for stability over 180 min. The remaining ozone levels in the process was insignificant (0.01 mg min-1). The CO2 and CO production in the photocatalytic-proxone process were 58.4, 5.7 ppm for toluene and 53.7, and 5.5 ppm for ethylbenzene respectively. Oxygen gas promoted and nitrogen gas had an inhibitory effect on the effective removal of pollutants. During the pollutants oxidation, various organic intermediates were identified.
Collapse
|
6
|
Mehralipour J, Jafari AJ, Gholami M, Esrafili A, Kermani M. Synthesis of BiOI@NH 2-MIL125(Ti)/Zeolite as a novel MOF and advanced hybrid oxidation process application in benzene removal from polluted air stream. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:937-952. [PMID: 36406604 PMCID: PMC9672198 DOI: 10.1007/s40201-022-00837-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
One of the popular process in volatile organic compounds removal in gas phase is advanced oxidation process. We in this research, synthesized BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite as a novel nanocomposite to degradation of benzene in hybrid advanced oxidation process. The nanocomposite synthesized via solvothermal method. The effect of airflow, ozone gas concentration, hydrogen peroxide concentration, relative humidity and initial benzene concentration are the main parameters in the UV/O3/H2O2/ nanocomposite hybrid process that were studied. The characterization by XRD, FT-IR, FESEM, EDS element mapping, TEM, BET, and UV-vis spectra indicated that nanocomposite were well synthesized. Optimal operating conditions of the process were determined at air flow of 0.1 l/min, ozone concentration of 0.3 mg/min, hydrogen peroxide concentration of 150 ppm, relative humidity of 45 ± 3% and benzene concentration of 50 ppmv. Under these conditions, more than 99% of benzene was degraded. The synergistic effect coefficient of the mechanisms is 1.53. The nanocomposite had good stability in the hybrid process and remained above 99% efficiency up to 5 times. The ozone concentration residual the system was reported to be negligible (0.013 mg/min). The CO and CO2 emissions in the hybrid process was higher than other processes, which indicates better mineralization in the hybrid process. Formaldehyde, octane, noonan, phenol, decanoic acid were reported as the main by-products. The results indicated that UV/O3/H2O2/ nanocomposite hybrid process has fantastic efficiency in the degradation of benzene as one of the indicators of VOCs.
Collapse
Affiliation(s)
- Jamal Mehralipour
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lu R, Liu C, Chen Y, Tan L, Yuan G, Wang P, Wang C, Yan H. Effect of linkages on photocatalytic H2 evolution over covalent organic frameworks. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Hu J, Gao X, Fan Q, Gao X. Facial controlled synthesis of Pt/MnO 2 catalysts with high efficiency for VOCs combustion. RSC Adv 2021; 11:16547-16556. [PMID: 35479134 PMCID: PMC9032203 DOI: 10.1039/d1ra02112e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Two sets of experiments were initially implemented to explore the best impregnation method and the best morphology substrate. In the first case, Pt/MnO2-r-WI catalyst showed a better performance than that of Pt/MnO2-r-IW. The test results illustrated that Wetness Impregnation (WI) could enhance the dispersion of Pt, ratios of Mn4+/Mn3+, Oads/Olatt and Pt4+/Pt0 as compared to those of Incipient Wetness Impregnation (IW). In the other method, MnO2-s catalyst displayed a higher catalytic efficiency than that of MnO2-r because the nanosphere morphology had larger BET surface area and pore volume to attract Pt atoms and toluene molecules. Therefore, the Pt/MnO2-s-WI catalyst was obtained and showed the best activity with low-temperature redox capability and oxygen mobility. It could eliminate toluene (T90) at a low temperature of 205 °C and remain stable over 150 h. effects of calcination temperature, toluene concentration and gas hourly space velocity (GHSV) were also investigated herein. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was also implemented to explore the reaction mechanism. It demonstrated that toluene was firstly adsorbed over Ptδ+ on the surface before being oxidized to CO2 and H2O. The whole procedure follows the Mars-van Krevelen mechanism. This work gives a comprehensive understanding of the heterogeneous catalysis mechanism. Two sets of experiments were initially implemented to explore the best impregnation method and the best morphology substrate.![]()
Collapse
Affiliation(s)
- Jing Hu
- Shenzhen University Shenzhen China
| | | | - Qingfeng Fan
- Shenzhen High-tech Investment Group Co., Ltd. Shenzhen China
| | | |
Collapse
|