1
|
Md Radzi MR, Rosli SNA, Yusoff MHM, Abidin SZ. Production of 1,3-propanediol via in situ glycerol hydrogenolysis in aqueous phase reforming using bimetallic W-Ni/CeO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35262-x. [PMID: 39397235 DOI: 10.1007/s11356-024-35262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
The production of 1,3-propanediol via in situ glycerol hydrogenolysis and aqueous phase reforming is a promising technique to ensure high product yield with shorter reaction times and lower costs, as demonstrated in this study by investigating the effect of tungsten (W) doping on Ni/CeO2 catalysts. Physicochemical properties of catalyst were determined using XRD, H2-TPR, NH3-TPD, BET, and FESEM-EDX techniques, and the catalytic performance was investigated at 230 °C, 20 bar, and 5 wt.% glycerol in an autoclave batch reactor. W doping ranging from 1-7% improved the catalyst's performance, with 3% W in 10% Ni/CeO₂ (3W10NC) achieving the highest yield (2.4%), selectivity (33.3%), and a good conversion rate (72.18%). The effect of reaction parameter on the 3W10NC catalyst showed that increasing pressure and temperature from the initial parameters had a detrimental effect on 1,3-propanediol attributed to the phenomenon called over-hydrogenolysis. Increasing the glycerol concentration to 20 wt.% also had a positive effect, resulting in the highest 1,3-propanediol yield of 22.27%. The effect of reaction time study revealed that the yield of 1,3-propanediol continued to increase steadily, reaching 38.29% after 4 h of reaction under the optimal conditions of 230 °C, 20 bar, and 20 wt.% glycerol. The kinetic study confirmed that the reaction follows first-order reaction with activation energy of 20.104 kJ mol-1. The catalyst reusability test revealed a decrease in the yield of 1,3-propanediol to 32.55%, likely due to deactivation caused by sintering and leaching, as indicated by the FESEM micrograph, EDX spectra, and NH3-TPD.
Collapse
Affiliation(s)
- Mohamad Razlan Md Radzi
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia
| | - Siti Nor Amira Rosli
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Kuantan, Pahang, 26300, Malaysia
| | - Mohd Hizami Mohd Yusoff
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia.
| | - Sumaiya Zainal Abidin
- Centre for Research in Advanced Fluid & Processes (FLUID CENTRE), Universiti Malaysia Pahang Al-Sultan Abdullah, Persiaran Tun Khalil Yaakob, Kuantan, Pahang, 26300, Malaysia
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St, Go Vap, Ho Chi Minh, 70000, Vietnam
| |
Collapse
|
2
|
González A, Martínez-Cruz MA, Alcántar-Vázquez B, Portillo-Vélez NS, Pfeiffer H, Lara-García HA. Influence of NiO into the CO 2 capture of Li 4SiO 4 and its catalytic performance on dry reforming of methane. Heliyon 2024; 10:e24645. [PMID: 38304793 PMCID: PMC10830542 DOI: 10.1016/j.heliyon.2024.e24645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Carbon capture, utilization, and storage (CCUS) technology offer promising solution to mitigate the threatening consequences of large-scale anthropogenic greenhouse gas emissions. Within this context, this report investigates the influence of NiO deposition on the Li4SiO4 surface during the CO2 capture process and its catalytic behavior in hydrogen production via dry methane reforming. Results demonstrate that the NiO impregnation method modifies microstructural features of Li4SiO4, which positively impact the CO2 capture properties of the material. In particular, the NiO-Li4SiO4 sample captured twice as much CO2 as the pristine Li4SiO4 material, 6.8 and 3.4 mmol of CO2 per gram of ceramic at 675 and 650 °C, respectively. Additionally, the catalytic results reveal that NiO-Li4SiO4 yields a substantial hydrogen production (up to 55 %) when tested in the dry methane reforming reaction. Importantly, this conversion remains stable after 2.5 h of reaction and is selective for hydrogen production. This study highlights the potential of Li4SiO4 both a support and a captor for a sorption-enhanced dry reforming of methane. To the best of our knowledge, this is the first report showcasing the effectiveness of Li4SiO4 as an active support for Ni-based catalysis in the dry reforming of methane. These findings provide valuable insights into the development of this composite as a dual-functional material for carbon dioxide capture and conversion.
Collapse
Affiliation(s)
- Ariadna González
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20364, CDMX, 01000, Mexico
| | - Miguel A. Martínez-Cruz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, CP 04510, CDMX, Mexico
| | - Brenda Alcántar-Vázquez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, CP 04510, CDMX, Mexico
| | - Nora S. Portillo-Vélez
- Depto. De Química, Área de Catálisis, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 189, Iztapalapa, CDMX, 09340, Mexico
| | - Heriberto Pfeiffer
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, CP 04510, CDMX, Mexico
| | - Hugo A. Lara-García
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20364, CDMX, 01000, Mexico
| |
Collapse
|
3
|
Liu X, Ling Y, Sun C, Shi H, Zheng H, Song C, Gao K, Dang C, Sun N, Xuan Y, Ding Y. Efficient solar-driven CO 2-to-fuel conversion via Ni/MgAlO x @SiO 2 nanocomposites at low temperature. FUNDAMENTAL RESEARCH 2024; 4:131-139. [PMID: 38933849 PMCID: PMC11197776 DOI: 10.1016/j.fmre.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Solar-driven CO2-to-fuel conversion assisted by another major greenhouse gas CH4 is promising to concurrently tackle energy shortage and global warming problems. However, current techniques still suffer from drawbacks of low efficiency, poor stability, and low selectivity. Here, a novel nanocomposite composed of interconnected Ni/MgAlO x nanoflakes grown on SiO2 particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO2-to-fuel conversion. An ultrahigh light-to-fuel efficiency up to 35.7%, high production rates of H2 (136.6 mmol min-1g- 1) and CO (148.2 mmol min-1g-1), excellent selectivity (H2/CO ratio of 0.92), and good stability are reported simultaneously. These outstanding performances are attributed to strong metal-support interactions, improved CO2 absorption and activation, and decreased apparent activation energy under direct light illumination. MgAlO x @SiO2 support helps to lower the activation energy of CH* oxidation to CHO* and improve the dissociation of CH4 to CH3* as confirmed by DFT calculations. Moreover, the lattice oxygen of MgAlO x participates in the reaction and contributes to the removal of carbon deposition. This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency, high selectivity, and benign sustainability.
Collapse
Affiliation(s)
- Xianglei Liu
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yueyue Ling
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chen Sun
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hang Shi
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hangbin Zheng
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chao Song
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ke Gao
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chunzhuo Dang
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Nan Sun
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yimin Xuan
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yulong Ding
- Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Jawad A. The effects of Fe, Mg, and Pt-doping on the improvement of Ni stabilized on Al 2O 3-CeO 3 catalysts for methane dry reforming. RSC Adv 2023; 13:33129-33145. [PMID: 37954415 PMCID: PMC10634349 DOI: 10.1039/d3ra04809h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Herein, the promotional effects of Mg, Fe, and Pt on Ni-based catalysts supported on Al2O3-CeO2 (Ni/Al2O3-CeO2) were investigated in the dry reforming of methane (DRM) reaction. The interaction of a suitable amount of MgO and FeO with Ce2O3 stabilized in the catalysts was demonstrated by the temperature-programmed desorption of CO2 (CO2-TPD). Ce2O3 has a high basicity for adsorbing CO2, generating a monoclinic Ce2O2CO3 species in the DRM reaction. Surface oxygen ions were also produced by adding MgO and FeO, as demonstrated by the temperature-programmed reduction of H2 (H2-TPR). Monoclinic Ce2O2CO3 and surface oxygen may both be used to oxidize and remove the carbon that was deposited, maintaining the high activity and stability of the metal Ni and Pt catalysts. The high dispersion and synergistic interactions between the platinum and oxide phases, which are associated with the decrease in reduction temperature and the rise in the number of basic sites, are responsible for the increased activity of Pt with M-Ni/Al2O3-CeO2 catalysts. The co-doped Ni/Al2O3-CeO2 catalysts with Mg and Fe significantly enhanced the activity (more than 80% methane and 84% CO2 conversion), the selectivity toward syngas (∼90%), and maintained the H2/CO ratio at about 0.97 at 700 °C.
Collapse
Affiliation(s)
- Abbas Jawad
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology 1101 N. State Street Rolla Missouri 65409 USA
- Midland Refineries Company MRC, AL Daura Refinery Company, Services Energy Board Baghdad Iraq
| |
Collapse
|
5
|
Babakouhi R, Alavi SM, Rezaei M, Akbari E, Varbar M. Combined CO2 reforming and partial oxidation of methane over mesoporous nanostructured Ni/M-Al2O3 catalyst: Effect of various support promoters and nickel loadings. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Study of the Synthetic Approach Influence in Ni/CeO2-Based Catalysts for Methane Dry Reforming. REACTIONS 2022. [DOI: 10.3390/reactions3040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study focuses on the synthetic approach influence in morphostructural features and catalytic performances for Ni/CeO2 catalysts. Incipient wetness impregnation, coprecipitation and nitrate combustion were studied as catalyst preparation approaches, and the materials were then tested at 700 °C for methane dry reforming (MDR). The morphostructural properties of the materials were deeply studied using several techniques, such as temperature programmed reduction (TPR), to investigate reducibility and support-metal interaction, N2 physisorption to evaluate the porosity and the surface area, scanning electron microscopy (SEM) and X-ray diffraction (XRD) to estimate Ni dispersion, and temperature programmed oxidation (TPO) to identify the type and amount of coke formed on catalysts’ surface after reaction. From the data obtained, coprecipitation turned out to be the most suitable technique for this application because this catalyst was able to reach 70% of CO2 conversion and 30% methane conversion, with an H2 yield of 15% and 30% yield of CO at the end of the 30 h test. Moreover, it was also the catalyst with the highest metal dispersion, the strongest interaction with the support, and the lowest coke deposition.
Collapse
|
7
|
Shi Y, Han K, Wang F. Ni-Cu Alloy Nanoparticles Confined by Physical Encapsulation with SiO 2 and Chemical Metal-Support Interaction with CeO 2 for Methane Dry Reforming. Inorg Chem 2022; 61:15619-15628. [PMID: 36129231 DOI: 10.1021/acs.inorgchem.2c02466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fabrication of sintering- and carbon-free Ni catalysts for methane dry reforming (MDR), which is attractive to upgrade greenhouse gases CH4 and CO2, is challenging. In this work, we innovatively synthesized Ni-Cu alloy nanoparticles confined by physical encapsulation and chemical metal-support interaction (MSI); the synergism of alloy effect, size effect, MSI, and confinement effect in the catalysts gave high rates of CH4 and CO2 of 6.98 and 7.16 mmol/(gNis), respectively, at 1023 K for 50 h. The rates were 2-3 times enhanced compared to those in the literature. XRD, TEM, H2-TPR, and so forth revealed that the alloy effect, size effect, and MSI of Ni-Cu and CeO2 enhanced the MDR activity; MSI promoted the ceria surface lattice oxygen mobility and generated more oxygen vacancies, almost completely gasifying carbon deposits; chemical confinement from MSI and physical confinement from SiO2 nanospheres realized sintering-free alloys and CeO2 nanoparticles. The synergistic approach provides a universal strategy for sintering- and carbon-free Ni catalyst design for MDR reaction.
Collapse
Affiliation(s)
- Yu Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 202123, China
| | - Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 202123, China
| | - Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 202123, China.,Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
| |
Collapse
|
8
|
Lian WMW, Shafiqah MNN, Roslan NA, Rosli SNA, Subramaniam S, Malek AF, Osazuwa OU, Abidin SZ. Deciphering the imperative role of ruthenium in enhancing the performance of Ni/Nd 2O 3.Gd 2O 3 in glycerol dry reforming. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- William Mah Wey Lian
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Mohd-Nasir Nor Shafiqah
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Nurul Asmawati Roslan
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Siti Nor Amira Rosli
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Suganthi Subramaniam
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Ahmad Faiz Malek
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Osarieme Uyi Osazuwa
- Centre for Research in Advanced Fluid & Processes (FLUID CENT RE), Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
- Department of Chemical Engineering, University of Benin, P MB 1154, Benin City, Edo State, Nigeria
| | - Sumaiya Zainal Abidin
- Centre for Research in Advanced Fluid & Processes (FLUID CENT RE), Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St, Go Vap, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Baharudin L, Rahmat N, Othman NH, Shah N, Syed-Hassan SSA. Formation, control, and elimination of carbon on Ni-based catalyst during CO2 and CH4 conversion via dry reforming process: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Cobalt-Ceria Catalysts for the Methanol Decomposition: Insights in the Long-Term Stability and Methanol Interaction. Top Catal 2022. [DOI: 10.1007/s11244-022-01667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Zhu R, Ding X, Liu Z, Li Y, Wu L, Zheng L, Wang Y. Promotional Effects of Nd2O3 Doped Ni/Al2O3–Y2O3 Catalysts on Oxygen Vacancy and Coking-Resistant in Dry Reforming of Methane. Catal Letters 2022. [DOI: 10.1007/s10562-022-03956-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Kim E, Lee J, Bae C, Seok H, Kim HU, Kim T. Effects of trivalent lanthanide (La and Nd) doped ceria abrasives on chemical mechanical polishing. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Téllez-Salazar W, Ovalle-Encinia O, Ramírez-Rosales D, Ma X, Dorantes-Rosales H, Lara-García H, Ortiz-Landeros J. Chemical synthesis and evaluation of Co3O4/Ce0.9Zr0.05Y0.05O2-δ mixed oxides for the catalytic-assisted combustion of soot. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of Ni-based confinement catalysts has been proposed and developed to address the challenge of the thermal sintering of metallic Ni active sites during CRM by the space and/or lattice confinement effects.
Collapse
Affiliation(s)
- Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, P.R. China
| |
Collapse
|
15
|
Małecka MA, Woźniak P. Hierarchical macroparticles of ceria with tube-like shape – synthesis and properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00755f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hierarchical organization of CeO2 nanoparticles into tube-like macroparticles has a great influence on the properties of the material.
Collapse
Affiliation(s)
- Małgorzata A. Małecka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Piotr Woźniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| |
Collapse
|