1
|
Kharpan B, Chetia J, Pyngrope H, Nandi R, Pradhan AK, Paul PC, Kumar D. Investigation of antileishmanial, antioxidant activities, CT-DNA interaction and DFT study of novel cobalt(II) complexes derived from mesogenic aromatic amino acids based Schiff base ligands. Biometals 2024:10.1007/s10534-024-00627-9. [PMID: 39154301 DOI: 10.1007/s10534-024-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
In the present work, new Co(II) complexes were synthesized from mesogenic aromatic amino acids based Schiff base ligands, HL1 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-phenylpropanoate] and HL2 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-(1H-indol-2-yl)propanoate]. The compounds were thoroughly characterised using different elemental, thermogravimetric and spectroscopic studies. The in-vitro antileishmanial efficacy of the compounds against Leishmania donovani was evaluated by MTT assay and the antioxidant activity was performed by Mensor's method. The cell viability percentage and IC50 values for both the antileishmanial and antioxidant studies revealed that the cobalt(II) complexes are comparable to the standard, amphotericin B and ascorbic acid, respectively, signifying the potential applications of the biogenic compounds. The CT-DNA interaction experiments study using photophysical techniques indicated that the cobalt(II) complexes exhibited pronounced interactions as compared to the parent ligand. The parent ligands were found to possess mesogenicity as evidenced from the polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The optical band gap of the compounds, as estimated from the Tauc plot of the UV-Vis spectra, lies within the domain of optoelectronic material properties, which was further supported through Density Functional Theory (DFT) study. Moreover, DFT methods have been used to explore the ground state geometry and DFT based reactivity descriptors of the two synthesised ligands, HL1 and HL2 along with their corresponding Co(II) complexes, Co(L1)2 and Co(L2)2. Reactivity descriptors obtained from Conceptual Density Functional Theory (CDFT) analysis reveal that Co(L1)2 is the most stable and Co(L2)2 is the most electrophilic.
Collapse
Affiliation(s)
| | - Jagritima Chetia
- Department of Chemistry, Assam University, Silchar, 788011, Assam, India
| | - Hunshisha Pyngrope
- Department of Chemistry, Assam University, Silchar, 788011, Assam, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Amit Kumar Pradhan
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pradip C Paul
- Department of Chemistry, Assam University, Silchar, 788011, Assam, India.
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| |
Collapse
|
2
|
Green synthesis of BOSCHIBAs: Photo- and water stability, cytotoxicity assays, and theoretical calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Gill AK, Shah S, Yadav P, Shanavas A, Neelakandan PP, Patra D. A visible-light activated ROS generator multilayer film for antibacterial coatings. J Mater Chem B 2022; 10:9869-9877. [PMID: 36437801 DOI: 10.1039/d2tb01454h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The current scenario of antibiotic-resistant bacteria and pandemics caused by viruses makes research in the area of antibacterial and antiviral materials and surfaces more urgent than ever. In this regard, salicylideneimine based tetracoordinate boron-containing organic compounds are emerging as a new class of photosensitizers for singlet oxygen generation. However, the inherent inability of small organic molecules to be processed limits their potential use in functional coatings. Here we show the synthesis of a novel polymer functionalized with diiodosalicylideneimine-boron difluoride (PEI-BF2) and its utility for surface coating inside glass vials via layer-by-layer (LbL) assembly. The multilayer thin films are characterized using AFM and UV-Vis spectroscopy and the resultant coatings display excellent stability. The multilayer coating could be activated using visible light, and owing to the photocatalytic activity of the incorporated PEI-BF2, the surface coating is able to generate singlet oxygen efficiently upon light irradiation. Further, the multilayer coated surfaces exhibit remarkable antimicrobial activity towards both Gram-positive and Gram-negative bacteria under a variety of conditions. Thus, owing to the simple synthesis and the convenient methodology adopted for the preparation of multilayer coatings, the material reported here could pave the way for the development of sunlight activated large area self-sterile surfaces.
Collapse
Affiliation(s)
- Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India. .,Centre for Nanoscience and Nanotechnology, Panjab University, Sector-25, Chandigarh - 160036, India
| | - Sanchita Shah
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Pranjali Yadav
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| | - Debabrata Patra
- Institute of Nano Science and Technology, Sector - 81, Mohali - 140306, Punjab, India.
| |
Collapse
|
4
|
Molina-Paredes AA, Lara-Cerón JA, Ibarra-Rodríguez M, del Angel-Mosqueda C, Dias HR, Jiménez-Pérez VM, Muñoz-Flores BM. Supramolecular interactions in X-ray structures of oxalamides: Green synthesis and characterization. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Guan L, He P, Chang J, Yong Q, Lei J, Wu B, Yuan A, Xiao Y, Bai H. Carbonized polymer dots with dual‐wavelength emission for labeling nucleoli in live cells through hydrogen bonding‐induced aggregation. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Linbo Guan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education West China Second University Hospital, Sichuan University Chengdu China
| | - Ping He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| | - Jinming Chang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| | - Qiwen Yong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute Sichuan University Chengdu China
| | - Bo Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute Sichuan University Chengdu China
| | - Anqian Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute Sichuan University Chengdu China
| | - Yao Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education West China Second University Hospital, Sichuan University Chengdu China
| |
Collapse
|
6
|
Far‐Red and Near‐Infrared Boron Schiff Bases (BOSCHIBAs) Dyes Bearing Anionic Boron Clusters. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Lara-Cerón JA, Jiménez-Pérez VM, Molina-Paredes AA, Sánchez M, Dias HVR, Ramírez-Montes PI, Muñoz-Flores BM. Preferential intermolecular interactions in a racemic mixture of amino acid Schiff base, conformational structures in solid state, and DFT studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj04720a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we report the green synthesis of a Shiff base [N-(2-hydroxy-1-naphthylidene)-l-phenylalanine (1)] derived from an α-amino acid through an ultrasound-assisted synthesis method with excellent chemical yield in a short period of time.
Collapse
Affiliation(s)
- Jesús A. Lara-Cerón
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| | - Víctor M. Jiménez-Pérez
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| | - Areli A. Molina-Paredes
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| | - Mario Sánchez
- Centro de Investigación en Materiales Avanzados
- S.C., Alianza Norte 202
- PIIT
- Carretera Monterrey-Aeropuerto Km. 10
- Apodaca
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Pedro I. Ramírez-Montes
- Universidad Nacional Autónoma de México
- Facultad de Estudios Superiores Cuautitlán
- Departamento de Matemáticas
- 54714 Cuautitlán Izcalli
- Mexico
| | - Blanca M. Muñoz-Flores
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- Ciudad Universitaria
- Nuevo León
- Mexico
| |
Collapse
|
8
|
Kurutos A, Nikodinovic-Runic J, Veselinovic A, Veselinović JB, Kamounah FS, Ilic-Tomic T. RNA-targeting low-molecular-weight fluorophores for nucleoli staining: synthesis, in silico modelling and cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj01659h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we present our work on the synthesis, investigation of the photophysical properties, interactions with nucleic acids, molecular docking, and imaging application of three carbocyanine dyes.
Collapse
Affiliation(s)
- Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | | | - Jovana B. Veselinović
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Fadhil S. Kamounah
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|