1
|
Benkowska-Biernacka D, Mucha SG, Matczyszyn K. Three-Dimensional Imaging of Bioinspired Lipidic Mesophases Using Multicolored Light-Emitting Carbon Nanodots. J Phys Chem Lett 2024; 15:6383-6391. [PMID: 38859759 PMCID: PMC11194803 DOI: 10.1021/acs.jpclett.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Recent progress in the design of carbon nanostructures exhibiting strong multiphoton-excited emission opens new pathways to explore the self-organization of lipids found in living organisms. Phospholipid-based lyotropic myelin figures (MFs) are promising materials as simplified models of biomembranes due to their structural resemblance to a multilamellar sheath insulating the axon. This study demonstrates the possibility of selective labeling of MFs by strongly emitting multicolor phloroglucinol-derived carbon nanodots (PG CNDs). Such dopants are efficiently excited by visible and near-infrared light; therefore, one- and two-photon fluorescence microscopies are incorporated to gain 3D insights into the MFs. Combining nondestructive fluorescence microscopy and spectroscopy techniques along with polarized light microscopy gives details on the stability and morphology of lipidic mesophases. Our findings suggest that PG CNDs can be a viable and simple alternative to conventional fluorescent lipid stains to image biologically relevant phospholipid-based structures.
Collapse
Affiliation(s)
- Dominika Benkowska-Biernacka
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sebastian G. Mucha
- Laboratoire
Charles Coulomb (L2C), UMR5221,
Université de Montpellier (CNRS), Campus Triolet, Place Eugene Bataillon, Montpellier 34095, France
| | - Katarzyna Matczyszyn
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
2
|
Benkowska-Biernacka D, Mucha SG, Firlej L, Formalik F, Bantignies JL, Anglaret E, Samoć M, Matczyszyn K. Strongly Emitting Folic Acid-Derived Carbon Nanodots for One- and Two-Photon Imaging of Lyotropic Myelin Figures. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366586 DOI: 10.1021/acsami.3c05656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs). Structural and optical properties of these new FA CNDs were first extensively characterized; they revealed remarkable fluorescence performance in linear and non-linear excitation regimes, justifying further applications. Then, confocal fluorescence microscopy and two-photon excited fluorescence microscopy were used to investigate a three-dimensional distribution of FA CNDs within the phospholipid-based MFs. Our results showed that FA CNDs are effective markers for imaging various forms and parts of multilamellar microstructures.
Collapse
Affiliation(s)
- Dominika Benkowska-Biernacka
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Sebastian G Mucha
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Lucyna Firlej
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Filip Formalik
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jean-Louis Bantignies
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Eric Anglaret
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Marek Samoć
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Mohammed SJ, Omer KM, Hawaiz FE. Deep insights to explain the mechanism of carbon dot formation at various reaction times using the hydrothermal technique: FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopic approaches. RSC Adv 2023; 13:14340-14349. [PMID: 37180002 PMCID: PMC10170355 DOI: 10.1039/d3ra01646c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
A well-explained mechanism for synthesizing carbon dots (CDs) is not yet explored and is still a subject of great debate and challenge. This study used a one-step hydrothermal method to prepare highly efficient, gram-scale, excellent water solubility, and blue fluorescent nitrogen-doped carbon dots (NCDs) with the particle size average distribution of around 5 nm from 4-aminoantipyrine. The effects of varying synthesis reaction times on the structure and mechanism formation of NCDs were investigated using spectroscopic methods, namely FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopies. The spectroscopic results indicated that increasing the reaction time affects the structure of the NCDs. As the hydrothermal synthesis reaction time is extended, the intensity of the peaks in the aromatic region decreases, and new peaks in the aliphatic and carbonyl group regions are generated, which display enhanced intensity. In addition, the photoluminescent quantum yield increases as the reaction time increases. The presence of a benzene ring in 4-aminoantipyrine is thought to contribute to the observed structural changes in NCDs. This is due to the increased noncovalent π-π stacking interactions of the aromatic ring during the carbon dot core formation. Moreover, the hydrolysis of the pyrazole ring in 4-aminoantipyrine results in polar functional groups attached to aliphatic carbons. As the reaction time prolongs, these functional groups progressively cover a larger portion of the surface of the NCDs. After 21 h of the synthesis process, the XRD spectrum of the produced NCDs illustrates a broad peak at 21.1°, indicating an amorphous turbostratic carbon phase. The d-spacing measured from the HR-TEM image is about 0.26 nm, which agrees with the (100) plane lattice of graphite carbon and confirms the purity of the NCD product with a surface covered by polar functional groups. This investigation will lead to a greater understanding of the effect of hydrothermal reaction time on the mechanism and structure of carbon dot synthesis. Moreover, it offers a simple, low-cost, and gram-scale method for creating high-quality NCDs crucial for various applications.
Collapse
Affiliation(s)
- Sewara J Mohammed
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
- Anesthesia Department, College of Health Sciences, Cihan University Sulaimaniya Sulaimaniya 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
| | - Farouq E Hawaiz
- Department of Chemistry, College of Education, Salahaddin University - Hawler Erbil Kurdistan Iraq
| |
Collapse
|
4
|
Mucha S, Piksa M, Firlej L, Krystyniak A, Różycka M, Kazana W, Pawlik KJ, Samoć M, Matczyszyn K. Non-toxic Polymeric Dots with the Strong Protein-Driven Enhancement of One- and Two-Photon Excited Emission for Sensitive and Non-destructive Albumin Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40200-40213. [PMID: 36017993 PMCID: PMC9460497 DOI: 10.1021/acsami.2c08858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The need for efficient probing, sensing, and control of the bioactivity of biomolecules (e.g., albumins) has led to the engineering of new fluorescent albumins' markers fulfilling very specific chemical, physical, and biological requirements. Here, we explore acetone-derived polymer dots (PDs) as promising candidates for albumin probes, with special attention paid to their cytocompatibility, two-photon absorption properties, and strong ability to non-destructively interact with serum albumins. The PDs show no cytotoxicity and exhibit high photostability. Their pronounced green fluorescence is observed upon both one-photon excitation (OPE) and two-photon excitation (TPE). Our studies show that both OPE and TPE emission responses of PDs are proteinaceous environment-sensitive. The proteins appear to constitute a matrix for the dispersion of fluorescent PDs, limiting both their aggregation and interactions with the aqueous environment. It results in a large enhancement of PD fluorescence. Meanwhile, the PDs do not interfere with the secondary protein structures of albumins, nor do they induce their aggregation, enabling the PD candidates to be good nanomarkers for non-destructive probing and sensing of albumins.
Collapse
Affiliation(s)
- Sebastian
G. Mucha
- Laboratoire
Charles Coulomb, UMR5221, Université
de Montpellier (CNRS), Montpellier 34095, France
| | - Marta Piksa
- Ludwik
Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Lucyna Firlej
- Laboratoire
Charles Coulomb, UMR5221, Université
de Montpellier (CNRS), Montpellier 34095, France
| | - Agnieszka Krystyniak
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Mirosława
O. Różycka
- Department
of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Wioletta Kazana
- Ludwik
Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Krzysztof J. Pawlik
- Ludwik
Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Marek Samoć
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Katarzyna Matczyszyn
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| |
Collapse
|
5
|
Gierlich P, Mucha SG, Robbins E, Gomes‐da‐Silva LC, Matczyszyn K, Senge MO. One‐Photon and Two‐Photon Photophysical Properties of Tetrafunctionalized 5,10,15,20‐tetrakis(
m‐
hydroxyphenyl)chlorin (
Temoporfin
) Derivatives as Potential Two‐Photon‐Induced Photodynamic Therapy Agents. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute Trinity Centre for Health Sciences Trinity College Dublin The University of Dublin St James's Hospital Dublin 8 Ireland
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C), UMR5221 University of Montpellier CNRS 34095 Montpellier France
| | - Emma Robbins
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
- Faculté des Sciences et Techniques Université de Limoges, PEIRENE, EA 7500 123 Avenue Albert Thomas, CEDEX 87060 Limoges France
| | - Lígia C. Gomes‐da‐Silva
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS) Technical University of Munich Lichtenbergstrasse 2a 85748 Garching Germany
| |
Collapse
|