1
|
Srisongkram T. DeepRA: A novel deep learning-read-across framework and its application in non-sugar sweeteners mutagenicity prediction. Comput Biol Med 2024; 178:108731. [PMID: 38870727 DOI: 10.1016/j.compbiomed.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Non-sugar sweeteners (NSSs) or artificial sweeteners have long been used as food chemicals since World War II. NSSs, however, also raise a concern about their mutagenicity. Evaluating the mutagenic ability of NSSs is crucial for food safety; this step is needed for every new chemical registration in the food and pharmaceutical industries. A computational assessment provides less time, money, and involved animals than the in vivo experiments; thus, this study developed a novel computational method from an ensemble convolutional deep neural network and read-across algorithms, called DeepRA, to classify the mutagenicity of chemicals. The mutagenicity data were obtained from the curated Ames test data set. The DeepRA model was developed using both molecular descriptors and molecular fingerprints. The obtained DeepRA model provides accurate and reliable mutagenicity classification through an independent test set. This model was then used to examine the NSSs-related chemicals, enabling the evaluation of mutagenicity from the NSSs-like substances. Finally, this model was publicly available at https://github.com/taraponglab/deepra for further use in chemical regulation and risk assessment.
Collapse
Affiliation(s)
- Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
2
|
Chai X, Chen X, Yan T, Zhao Q, Hu B, Jiang Z, Guo W, Zhang Y. Intestinal Barrier Impairment Induced by Gut Microbiome and Its Metabolites in School-Age Children with Zinc Deficiency. Nutrients 2024; 16:1289. [PMID: 38732540 PMCID: PMC11085614 DOI: 10.3390/nu16091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Zinc deficiency affects the physical and intellectual development of school-age children, while studies on the effects on intestinal microbes and metabolites in school-age children have not been reported. School-age children were enrolled to conduct anthropometric measurements and serum zinc and serum inflammatory factors detection, and children were divided into a zinc deficiency group (ZD) and control group (CK) based on the results of serum zinc. Stool samples were collected to conduct metagenome, metabolome, and diversity analysis, and species composition analysis, functional annotation, and correlation analysis were conducted to further explore the function and composition of the gut flora and metabolites of children with zinc deficiency. Beta-diversity analysis revealed a significantly different gut microbial community composition between ZD and CK groups. For instance, the relative abundances of Phocaeicola vulgatus, Alistipes putredinis, Bacteroides uniformis, Phocaeicola sp000434735, and Coprococcus eutactus were more enriched in the ZD group, while probiotic bacteria Bifidobacterium kashiwanohense showed the reverse trend. The functional profile of intestinal flora was also under the influence of zinc deficiency, as reflected by higher levels of various glycoside hydrolases in the ZD group. In addition, saccharin, the pro-inflammatory metabolites, and taurocholic acid, the potential factor inducing intestinal leakage, were higher in the ZD group. In conclusion, zinc deficiency may disturb the gut microbiome community and metabolic function profile of school-age children, potentially affecting human health.
Collapse
Affiliation(s)
- Xiaoqi Chai
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Xiaohui Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Tenglong Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Binshuo Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Zhongquan Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| |
Collapse
|
3
|
A comprehensive review of sources of nitrosamine contamination of pharmaceutical substances and products. Regul Toxicol Pharmacol 2023; 139:105355. [PMID: 36792049 DOI: 10.1016/j.yrtph.2023.105355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
N-nitrosamines are carcinogenic impurities most commonly found in groundwater, treated water, foods, beverages and consumer products. The recent discovery of N-nitrosamines in pharmaceutical products and subsequent recalls pose a significant health risk to patients. Initial investigation by the regulatory agency identified Active Pharmaceutical Ingredients (API) as a source of contamination. However, N-nitrosamine formation during API synthesis is a consequence of numerous factors like chemistry selection for synthesis, contaminated solvents and water. Furthermore, apart from API, N-nitrosamines have also been found to embed in the final product due to degradation during formulation processing or storage through contaminated excipients and printing inks. The landscape of N-nitrosamine contamination of pharmaceutical products is very complex and needs a comprehensive compilation of sources responsible for N-nitrosamine contamination of pharmaceutical products. Therefore, this review aims to extensively compile all the reported and plausible sources of nitrosamine impurities in pharmaceutical products. The topics like risk assessment and quantitative strategies to estimate nitrosamines in pharmaceutical products are out of the scope of this review.
Collapse
|
4
|
Ata A, Salar U, Saleem F, Lateef M, Khan SA, Khan KM, Taha M, Haider SM, Ul-Haq Z. Identification of potential urease inhibitors and antioxidants based on saccharin derived analogs: Synthesis, in vitro, and in silico studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Choi I, Trenerry MJ, Lee KS, King N, Berry JF, Schomaker JM. Divergent C-H Amidations and Imidations by Tuning Electrochemical Reaction Potentials. CHEMSUSCHEM 2022; 15:e202201662. [PMID: 36166327 DOI: 10.1002/cssc.202201662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical C-H functionalizations are attractive transformations, as they are capable of avoiding the use of transition metals, pre-oxidized precursors, or suprastoichiometric amounts of terminal oxidants. Herein an electrochemically tunable method was developed that enabled the divergent formation of cyclic amines or imines by applying different reaction potentials. Detailed cyclic voltammetry analyses, coupled with chronopotentiometry experiments, were carried out to provide insight into the mechanism, while atom economy was assessed through a paired electrolysis. Selective C-H amidations and imidations were achieved to afford five- to seven-membered sulfonamide motifs that could be employed for late-stage modifications.
Collapse
Affiliation(s)
- Isaac Choi
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
- Present address, Department of Chemistry, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28644, Republic of Korea
| | - Michael J Trenerry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Ken S Lee
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Nicholas King
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| |
Collapse
|
6
|
Physicochemical and tribological comparison of bio- and halogen-based ionic liquid lubricants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chen Q, Hou H, Zheng D, Xu X, Xi X, Chen Y. HPTLC screening of saccharin in beverages by densitometry quantification and SERS confirmation. RSC Adv 2022; 12:8317-8322. [PMID: 35424832 PMCID: PMC8984960 DOI: 10.1039/d1ra09416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
As a widely used artificially synthesized sweetener, saccharin faced numerous disputes associated with food safety. Therefore, its fast analysis in food is of crucial importance. In this study, an analytical method for the fast and reliable screening of saccharin in various beverages was established and validated, by combining HPTLC with densitometry and surface enhanced Raman spectroscopy. The diluted sample liquid was directly sprayed and separated on a silica gel plate using a mixture of ethyl acetate and acetic acid in the ratio of 9 : 1 (v/v) as the mobile phase. The separation realized full isolation of the analyte from background noises. Then, a densitometry analysis in the absorption-reflection mode (working wavelength 230 nm) was optimized to obtain quantitative data, showing a good linearity in the range of 40-200 ng per band (R 2 = 0.9988). The limits of detection and quantification were determined to be 6 and 20 ng per band, respectively, which were equal to 6 and 20 mg kg-1. The quantitative results also displayed satisfactory accuracy and precision, with a spike-recovery rate within 87.75-98.14% (RSD <5.13%). As a cost-efficient tool for confirmation, surface enhanced Raman spectroscopy was employed to profile the molecular fingerprint of the analyte eluted from the plate layer. Under optimized conditions (785 nm laser as the excitation light and silver nanoparticle loaded glass fiber paper as the active substrate), the elution of the saccharin band exhibited stable and sensitive surface enhanced Raman spectroscopy signals. This study demonstrated that HPTLC could be a versatile platform for food analysis, with outstanding simplicity and cost-efficiency.
Collapse
Affiliation(s)
- Qifei Chen
- School of Food Science and Technology, Jiangnan University Wuxi 214122 China
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Huaming Hou
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Dan Zheng
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University Wuxi 214122 China
| | - Xingjun Xi
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization Beijing 100191 China
| | - Yisheng Chen
- School of Food Science and Technology, Jiangnan University Wuxi 214122 China
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 China
| |
Collapse
|
8
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Copper(II) Prevents the Saccarine-Dialkylcyanamide Coupling by Forming Mononuclear (Saccharinate)(Dialkylcyanamide)copper(II) Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9090069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The reaction in the system CuII/sacNa(H)/NCNR2 (sacNa(H) = sodium saccharinate (saccharin); R = Me, Et) results in the formation of the complexes [Cu(sac)2(NCNR2)(H2O)2] (R = Me 1, Et 2) instead of the expected products derived from the saccharin–cyanamide coupling. Complexes 1, 2, and hydrate 1·2H2O were characterized by IR, AAS (Cu%), TGA, and also by single-crystal X-ray diffraction for 1 and 1·2H2O. An integrated computational study of model structure 1 in the gas phase demonstrates that the Cu–Ncyanamide and Cu–Nsac coordination bonds exhibited a single bond character, polarized toward the N atom and almost purely electrostatic, with the calculated vertical total energies for the Cu–Ncyanamide and Cu–Nsac of 43.6 and 156.4 kcal/mol, respectively. These data confirmed that the copper(II) completely blocks the nucleophilic centers of ligands via coordination, thus preventing the saccharin–cyanamide coupling.
Collapse
|