1
|
Hou J, Chen J, Liu H, Luo C, Li J, Liu J, Yang B. Uncovering the Effect of A-Site Cations on Localized Excitons Photoluminescence of Manganese-Doped Zinc Chloride Nanocrystals. J Phys Chem Lett 2024; 15:4076-4081. [PMID: 38587414 DOI: 10.1021/acs.jpclett.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elucidating the key factors that affect the localized excitons (LEs) photoluminescence (PL) in lead-free metal halide nanocrystals (NCs) is important for their optoelectronic applications. However, the effect of A-site cations on LEs based PL is not well understood. Herein, we varied the A-site cation ratio (Rb/Cs) to investigate the influence on LEs based PL in manganese-doped zinc chloride NCs. Through time-resolved photoluminescence (TR-PL) spectra and density functional theory (DFT) calculations, we discovered that Cl vacancy is energetically more favorable in Mn2+-doped Rb3ZnCl5 NCs compared to Mn2+-doped Cs3ZnCl5 NCs. The higher concentration of Cl vacancy increases the nonradiative recombination process in Rb3ZnCl5:Mn2+ NCs, ultimately determining the PL efficiency. This research enhances the understanding of the A-site cation effect on LEs-based PL in lead-free metal halide NCs.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Chen
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Huaxin Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cheng Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juntao Li
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Adib MA, Sharmin F, Basith MA. Tuning the morphology, stability and optical properties of CsSnBr 3 nanocrystals through bismuth doping for visible-light-driven applications. NANOSCALE ADVANCES 2023; 5:6194-6209. [PMID: 37941959 PMCID: PMC10628993 DOI: 10.1039/d3na00309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
In this investigation, we have demonstrated the synthesis of lead-free CsSnBr3 (CSB) and 5 mol% bismuth (Bi) doped CSB (CSB'B) nanocrystals, with a stable cubic perovskite structure following a facile hot injection technique. The Bi substitution in CSB was found to play a vital role in reducing the size of the nanocrystals significantly, from 316 ± 93 to 87 ± 22 nm. Additionally, Bi doping has inhibited the oxidation of Sn2+ of CSB perovskite. A reduction in the optical band gap from 1.89 to 1.73 eV was observed for CSB'B and the PL intensity was quenched due to the introduction of the Bi3+ dopant. To demonstrate one of the visible-light-driven applications of the nanocrystals, photodegradation experiments were carried out as a test case. Interestingly, under UV-vis irradiation, the degradation efficiency of CSB'B was roughly one order lower than that of P25 titania nanoparticles; however, it was almost five times higher when driven by visible light under identical conditions. The water stability of CSB'B perovskite and suppression of the oxidative degradation of Sn were confirmed through XRD and XPS analyses after photocatalysis. Moreover, by employing experimental parameters, DFT-based first-principles calculations were performed, which demonstrated an excellent qualitative agreement between experimental and theoretical outcomes. The as-synthesized Bi-doped CSB might be a stable halide perovskite with potential in visible-light-driven applications.
Collapse
Affiliation(s)
- Md Asif Adib
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh
| | - Fahmida Sharmin
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh
| | - M A Basith
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh
| |
Collapse
|
3
|
Kim DY, Jung JG, Lee YJ, Park MH. Lead-Free Halide Perovskite Nanocrystals for Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6317. [PMID: 37763594 PMCID: PMC10532894 DOI: 10.3390/ma16186317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jae-Geun Jung
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Ye-Ji Lee
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
| | - Min-Ho Park
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
- Integrative Institute of Basic Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
4
|
Wu ZY, Zhuang JH, Lin YT, Chou YH, Wu PC, Wu CL, Chen P, Hsu HC. One- and Two-Photon Excited Photoluminescence and Suppression of Thermal Quenching of CsSnBr 3 Microsquare and Micropyramid. ACS NANO 2021; 15:19613-19620. [PMID: 34784180 DOI: 10.1021/acsnano.1c06762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermal photoluminescence (PL) quenching is fundamentally important for perovskite optoelectronic applications. Herein, we investigated PL characteristics of CsSnBr3 microsquares and micropyramids synthesized by chemical vapor deposition (CVD) and their PL quenching behavior at high temperature. These microstructures have favorable PL performances in ambient atmosphere. Under two-photon excitation, we observed whispering gallery modes (WGMs) in microsquares and amplified spontaneous emission (ASE) in micropyramids. Reversible PL losses due to thermal effect were observed for both samples. Monotonic blue shifts in PL emission upon temperature increase suggest a band gap widening associated with an emphanisis effect. Temperature-dependent spectral line width analysis reveals that a line width broadening is attributed to the dominant electron-longitudinal optical phonon interaction. The estimated activation energy of thermally assisted nonradiative recombination for CsSnBr3 microsquares and micropyramids is over 310 meV by the Arrhenius equation, which is higher than CsPbBr3. These results prove that CsSnBr3 exhibits better thermal stability than Pb-based perovskites.
Collapse
Affiliation(s)
- Zong Yu Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jie-Hao Zhuang
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Tsung Lin
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Hsun Chou
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chung-Lin Wu
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Peter Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsu-Cheng Hsu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
5
|
Tang Y, Tang S, Luo M, Guo Y, Zheng Y, Lou Y, Zhao Y. All-inorganic lead-free metal halide perovskite quantum dots: progress and prospects. Chem Commun (Camb) 2021; 57:7465-7479. [PMID: 34259252 DOI: 10.1039/d1cc01783g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lead halide perovskite quantum dots have drawn worldwide attention due to their quantum confinement effect and excellent optical gain properties. It is worth noting that due to the toxicity of lead ions and the inherent instability of organic groups, research on all-inorganic lead-free metal halide perovskite quantum dots (ILFHPQDs) has become a hot spot in recent years. This paper summarizes the latest research progress of ILFHPQDs, analyzes the sources and limitations affecting the performance of ILFHPQDs, and provides the improvement methods. Firstly, the typical synthesis strategies of ILFHPQDs are discussed, followed by a focus on the structural characteristics, optoelectronic properties and stability of each type of ILFHPQD. Next, the applications of ILFHPQDs in devices are investigated. Finally, the challenges, solutions and future application directions of ILFHPQDs are prospected.
Collapse
Affiliation(s)
- Yuanqian Tang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing, 211189, China.
| | - Songzhi Tang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing, 211189, China.
| | - Ming Luo
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing, 211189, China.
| | - Yanmei Guo
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing, 211189, China.
| | - Yingping Zheng
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing, 211189, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing, 211189, China.
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|