1
|
Ye W, Zhu H, Liu M, Wu W. Rational microfluidic design for dielectrophoresis-based multitarget separation of blood cells and circulating tumor cells. Comput Methods Biomech Biomed Engin 2024:1-13. [PMID: 39639761 DOI: 10.1080/10255842.2024.2436913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
A rapid, sensitive, and low-damage method for isolating circulating tumor cells (CTCs) is crucial for cancer research. This study, based on dielectrophoresis (DEP) and finite element modeling, investigates multitarget cell separation from blood on microfluidic chips. The effects of electrode shape, dielectric conductivity, and flow rate on cell movement and separation efficiency were analyzed. The results showed optimal separation with a 90° electrode angle, 1.5 V applied voltage, and a 1:3 inlet flow rate ratio. This study provides valuable insights for optimizing DEP-based microfluidic devices to improve multitarget cell separation efficiency and purity.
Collapse
Affiliation(s)
- Wu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Huancheng Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ming Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenjie Wu
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Zhang S, Chu HCW. Diffusioosmotic flow reversals due to ion-ion electrostatic correlations. NANOSCALE 2024. [PMID: 38651181 DOI: 10.1039/d3nr06152c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Existing theories of diffusioosmosis have neglected ion-ion electrostatic correlations, which are important in concentrated electrolytes. Here, we develop a mathematical model to numerically compute the diffusioosmotic mobilities of binary symmetric electrolytes across low to high concentrations in a charged parallel-plate channel. We use the modified Poisson equation to model the ion-ion electrostatic correlations and the Bikerman model to account for the finite size of ions. We report two key findings. First, ion-ion electrostatic correlations can cause a unique reversal in the direction of diffusioosmosis. Such a reversal is not captured by existing theories, occurs at ≈ 0.4 M for a monovalent electrolyte, and at a much lower concentration of ≈ 0.003 M for a divalent electrolyte in a channel with the same surface charge. This highlights that diffusioosmosis of a concentrated electrolyte can be qualitatively different from that of a dilute electrolyte, not just in its magnitude but also its direction. Second, we predict a separate diffusioosmotic flow reversal, which is not due to electrostatic correlations but the competition between the underlying chemiosmosis and electroosmosis. This reversal can be achieved by varying the magnitude of the channel surface charge without changing its sign. However, electrostatic correlations can radically change how this flow reversal depends on the channel surface charge and ion diffusivity between a concentrated and a dilute electrolyte. The mathematical model developed here can be used to design diffusioosmosis of dilute and concentrated electrolytes, which is central to applications such as species mixing and separation, enhanced oil recovery, and reverse electrodialysis.
Collapse
Affiliation(s)
- Shengji Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Henry C W Chu
- Department of Chemical Engineering and Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Wang Y, Chen H, Yang X, Diao X, Zhai J. Biological electricity generation system based on mitochondria-nanochannel-red blood cells. NANOSCALE 2024; 16:7559-7565. [PMID: 38501607 DOI: 10.1039/d3nr05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The high-efficiency energy conversion process in organisms is usually carried out by organelles, proteins and membrane systems. Inspired by the cellular aerobic respiration process, we present an artificial electricity generation device, aimed at sustainable and efficient energy conversion using biological components, to demonstrate the feasibility of bio-inspired energy generation for renewable energy solutions. This approach bridges biological mechanisms and technology, offering a pathway to sustainable, biocompatible energy sources. The device features a mitochondria anode and oxygen-carrying red blood cells (RBCs) cathode, alongside a sandwich-structured sulfonated poly(ether ether ketone) and polyimide composite nanochannel for efficient proton transportation, mimicking cellular respiration. Achieving significant performance with 40 wt% RBCs, it produced a current density of 6.42 mA cm-2 and a maximum power density of 1.21 mW cm-2, maintaining over 50% reactivity after 8 days. This research underscores the potential of bio-inspired systems for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- College of New Energy and Materials, China University of Petroleum, Beijing, Beijing 102249, PR China
| | - Huaxiang Chen
- College of New Energy and Materials, China University of Petroleum, Beijing, Beijing 102249, PR China
| | - Xiaoda Yang
- State Key Laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center Beijing 100191, P. R. China
| | - Xungang Diao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Jin Zhai
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- State Key Laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center Beijing 100191, P. R. China
| |
Collapse
|
4
|
Torres-Castro K, Acuña-Umaña K, Lesser-Rojas L, Reyes DR. Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit. MICROMACHINES 2023; 14:2117. [PMID: 38004974 PMCID: PMC10672873 DOI: 10.3390/mi14112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Blood is a complex sample comprised mostly of plasma, red blood cells (RBCs), and other cells whose concentrations correlate to physiological or pathological health conditions. There are also many blood-circulating biomarkers, such as circulating tumor cells (CTCs) and various pathogens, that can be used as measurands to diagnose certain diseases. Microfluidic devices are attractive analytical tools for separating blood components in point-of-care (POC) applications. These platforms have the potential advantage of, among other features, being compact and portable. These features can eventually be exploited in clinics and rapid tests performed in households and low-income scenarios. Microfluidic systems have the added benefit of only needing small volumes of blood drawn from patients (from nanoliters to milliliters) while integrating (within the devices) the steps required before detecting analytes. Hence, these systems will reduce the associated costs of purifying blood components of interest (e.g., specific groups of cells or blood biomarkers) for studying and quantifying collected blood fractions. The microfluidic blood separation field has grown since the 2000s, and important advances have been reported in the last few years. Nonetheless, real POC microfluidic blood separation platforms are still elusive. A widespread consensus on what key figures of merit should be reported to assess the quality and yield of these platforms has not been achieved. Knowing what parameters should be reported for microfluidic blood separations will help achieve that consensus and establish a clear road map to promote further commercialization of these devices and attain real POC applications. This review provides an overview of the separation techniques currently used to separate blood components for higher throughput separations (number of cells or particles per minute). We present a summary of the critical parameters that should be considered when designing such devices and the figures of merit that should be explicitly reported when presenting a device's separation capabilities. Ultimately, reporting the relevant figures of merit will benefit this growing community and help pave the road toward commercialization of these microfluidic systems.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
- Theiss Research, La Jolla, CA 92037, USA
| | - Katherine Acuña-Umaña
- Medical Devices Master’s Program, Instituto Tecnológico de Costa Rica (ITCR), Cartago 30101, Costa Rica
| | - Leonardo Lesser-Rojas
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), San José 11501, Costa Rica;
- School of Physics, Universidad de Costa Rica (UCR), San José 11501, Costa Rica
| | - Darwin R. Reyes
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| |
Collapse
|
5
|
Mohammadi R, Afsaneh H, Rezaei B, Moghimi Zand M. On-chip dielectrophoretic device for cancer cell manipulation: A numerical and artificial neural network study. BIOMICROFLUIDICS 2023; 17:024102. [PMID: 36896355 PMCID: PMC9991445 DOI: 10.1063/5.0131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer, as one of the most frequent types of cancer in women, imposes large financial and human losses annually. MCF-7, a well-known cell line isolated from the breast tissue of cancer patients, is usually used in breast cancer research. Microfluidics is a newly established technique that provides many benefits, such as sample volume reduction, high-resolution operations, and multiple parallel analyses for various cell studies. This numerical study presents a novel microfluidic chip for the separation of MCF-7 cells from other blood cells, considering the effect of dielectrophoretic force. An artificial neural network, a novel tool for pattern recognition and data prediction, is implemented in this research. To prevent hyperthermia in cells, the temperature should not exceed 35 °C. In the first part, the effect of flow rate and applied voltage on the separation time, focusing efficiency, and maximum temperature of the field is investigated. The results denote that the separation time is affected by both the input parameters inversely, whereas the two remaining parameters increase with the input voltage and decrease with the sheath flow rate. A maximum focusing efficiency of 81% is achieved with a purity of 100% for a flow rate of 0.2 μ L / min and a voltage of 3.1 V . In the second part, an artificial neural network model is established to predict the maximum temperature inside the separation microchannel with a relative error of less than 3% for a wide range of input parameters. Therefore, the suggested label-free lab-on-a-chip device separates the target cells with high-throughput and low voltages.
Collapse
Affiliation(s)
- Rasool Mohammadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-463, Iran
| | - Hadi Afsaneh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Behnam Rezaei
- Small Medical Devices, BioMEMS, and LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-463, Iran
| | - Mahdi Moghimi Zand
- Small Medical Devices, BioMEMS, and LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-463, Iran
| |
Collapse
|
6
|
K K, Kandasamy SK, P S, Alodhayb A. Numerical simulation and parameter optimization of micromixer device using fuzzy logic technique. RSC Adv 2023; 13:4504-4522. [PMID: 36760289 PMCID: PMC9893881 DOI: 10.1039/d2ra07992e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
The objective of this study is the design, simulation, and performance optimization of a micromixer device using the three input parameters of device structure, flow rate and diffusion coefficient of gold nanoparticles while the output parameters are concentration, velocity, pressure and time domain analysis. Each input parameter in the microfluidic chip influences the system output. The data were gathered through extensive study in order to optimize the diffusion control. The fuzzy logic approach is used to optimize the performance of the device with respect to the input parameters. In this study, we have chosen three different flow rates of 1, 5, and 10 μL min-1, three different diffusion coefficient values of low, average and high diffusivity gold nanofluids (15.3 e-12, 15.3 e-11, 15.3 e-10 m2 s-1) which are used in three different shapes of micromixer device, Y-shaped straight channel micromixer, herringbone-shaped micromixer, and herringbone shape with obstacles micromixer, and we measured the output performance, such as mixing efficiency, pressure drop, concentration across the microchannel and time domain. The data were obtained by fuzzy logic analysis and it was found that the herringbone shape with obstacles micromixer shows 100% mixing efficiency within a short duration of 5000 μm, and complete mixing was achieved within 10 seconds with a low pressure drop of 128 Pa.
Collapse
Affiliation(s)
- Karthikeyan K
- Department of Electronics and Communication Engineering, M.Kumarasamy College of Engineering Karur Tamil Nadu India
| | - Senthil Kumar Kandasamy
- Department of Electronics and Communication Engineering, Kongu Engineering College Erode Tamil Nadu India
| | - Saravanan P
- Department of Self Development Skills, CFY Deanship, King Saud University Riyadh Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh Saudi Arabia
| |
Collapse
|
7
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
8
|
Foundation of the Manipulation Technology for Tiny Objects Based on the Control of the Heterogeneity of Electric Fields. ENERGIES 2022. [DOI: 10.3390/en15134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Effective sorting and extraction of tiny plastic objects is becoming increasingly important for manufacturing high-quality recycled plastics. Herein, we designed a manipulation device for tiny objects that can drive multiple target objects individually. This type of device has a potential to sort tiny pieces of a wide variety of materials, not strongly depending on their physical properties, by combining different detection meanings. In this study, two types of devices were tested as the basic components of the proposed device. One of them had a single object-holding point and the other had two of them. These holding points consisted of strip-shaped electrodes facing each other. The high voltage applied to the facing electrodes created forces heading toward the object-holding points caused by the heterogeneity of the electric field in the devices. The forces created in these devices were determined from the motion analysis of a glass sphere, which is a model for target objects, and a numerical simulation. The results indicate that dielectrophoretic forces are dominant at locations that are sufficiently remote from the holding point, and the Coulombic force caused by dielectric barrier discharge is dominant near the high-voltage electrodes with the holding point. Moreover, the transfer of a glass sphere from one holding point to an adjacent point was successfully demonstrated.
Collapse
|
9
|
Afsaneh H, Mohammadi R. Microfluidic platforms for the manipulation of cells and particles. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Laxmi V, Joshi SS, Agrawal A. Biophysical Phenomenon-Based Separation of Platelet-Poor Plasma from Blood. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijai Laxmi
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Suhas S. Joshi
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Amit Agrawal
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021; 188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
This review article presents a discussion of some of the latest advancements in the field of microscale electrokinetics for the analysis of cells and subcellular materials in clinical applications. The introduction presents an overview on the use of electric fields, i.e., electrokinetics, in microfluidics devices and discusses the potential of electrokinetic-based methods for the analysis of liquid biopsies in clinical and point-of-care applications. This is followed by four comprehensive sections that present some of the newest findings on the analysis of circulating tumor cells, blood (red blood cells, white blood cells, and platelets), stem cells, and subcellular particles (extracellular vesicles and mitochondria). The valuable contributions discussed here (with 131 references) were mainly published during the last 3 to 4 years, providing the reader with an overview of the state-of-the-art in the use of microscale electrokinetic methods in clinical analysis. Finally, the conclusions summarize the main advancements and discuss the future prospects.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|