1
|
Muthukumaran T, Philip J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles. Adv Colloid Interface Sci 2024; 334:103314. [PMID: 39504854 DOI: 10.1016/j.cis.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
Collapse
Affiliation(s)
- T Muthukumaran
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India
| | - John Philip
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India; Department of Physics, Cochin University of Science and Technology, Kochi -22, India.
| |
Collapse
|
2
|
Landarani-Isfahani A, Mohammadpoor-Baltork I, Moghadam M, Mirkhani V, Tangestaninejad S, Safari R, Hadi H. Palladium-immobilized triazine dendrimer on magnetic nanoparticles: as reusable microreactor for solvent-dependent synthesis strategy of 2,3-diphenylindoles and pentaphenylpyrrole derivatives. Sci Rep 2024; 14:22498. [PMID: 39341861 PMCID: PMC11439034 DOI: 10.1038/s41598-024-72224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
In this work, we demonstrate that palladium-immobilized triazine dendrimer on magnetic nanoparticles in proper solvents, provides an impressive, atom-economical and compelling approach for the selective synthesis of 2,3-diphenylindole or pentaphenylpyrrole derivatives via annulation of diphenylacetylene with diverse anilines. Both the annulation methods were taken place under copper- and phosphine-free conditions with high yields at air atmosphere. Likewise, bis-indoles were obtained with excellent yields under optimized reaction conditions. Besides, the catalyst was isolated and reused for seven cycles without decrease potential of catalytic activity. Two mechanistic pathways were proposed and geometry optimizations, electronic properties as well as vibrational characterizations of all structures were performed with density functional theory (DFT). Also, the investigation of atomic basin properties of these molecular systems was carried out utilizing the quantum atoms-in-molecules theory (QTAIM). The results showed that 2,3-diphenylindole and pentaphenyl pyrrole molecular systems can be used as intramolecular acceptor/donor (n-like/p-like) sections.
Collapse
Affiliation(s)
| | | | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Valiollah Mirkhani
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Reza Safari
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Hamid Hadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
3
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Myasnikov DA, Tkachenko AG, Sidorov RY, Uchuskin MG. Synthesis, Antimicrobial and Antibiofilm Activities, and Molecular Docking Investigations of 2-(1 H-Indol-3-yl)-1 H-benzo[ d]imidazole Derivatives. Molecules 2023; 28:7095. [PMID: 37894573 PMCID: PMC10609029 DOI: 10.3390/molecules28207095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The treatment of many bacterial and fungal infections remains a problem due to increasing antibiotic resistance and biofilm formation by pathogens. In the present article, a methodology for the chemoselective synthesis of 2-(1H-indol-3-yl)-1H-benzo[d]imidazole derivatives is presented. We report on the antimicrobial activity of synthesized 2-(1H-indol-3-yl)-1H-benzo[d]imidazoles with significant activity against Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 43300 (MRSA), Mycobacterium smegmatis (mc(2)155/ATCC 700084), and Candida albicans ATCC 10231. High activity against staphylococci was shown by indolylbenzo[d]imidazoles 3ao and 3aq (minimum inhibitory concentration (MIC) < 1 µg/mL) and 3aa and 3ad (MIC 3.9-7.8 µg/mL). A low MIC was demonstrated by 2-(1H-indol-3-yl)-1-methyl-1H-benzo[d]imidazole (3ag) against M. smegmatis and against C. albicans (3.9 µg/mL and 3.9 µg/mL, respectively). 2-(5-Bromo-1H-indol-3-yl)-6,7-dimethyl-1H-benzo[d]imidazole (3aq) showed a low MIC of 3.9 µg/mL against C. albicans. Compounds 3aa, 3ad, 3ao, and 3aq exhibited excellent antibiofilm activity, inhibiting biofilm formation and killing cells in mature biofilms. Molecular docking analysis identified three potential interaction models for the investigated compounds, implicating (p)ppGpp synthetases/hydrolases, FtsZ proteins, or pyruvate kinases in their antibacterial action mechanism.
Collapse
Affiliation(s)
- Elena Y. Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (E.R.N.); (R.O.S.); (D.A.M.); (R.Y.S.); (M.G.U.)
| | - Larisa Y. Nesterova
- Department of Biology, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (L.Y.N.); (A.G.T.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, The Ural Branch of Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Ekaterina R. Nasibullina
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (E.R.N.); (R.O.S.); (D.A.M.); (R.Y.S.); (M.G.U.)
| | - Roman O. Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (E.R.N.); (R.O.S.); (D.A.M.); (R.Y.S.); (M.G.U.)
| | - Danil A. Myasnikov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (E.R.N.); (R.O.S.); (D.A.M.); (R.Y.S.); (M.G.U.)
| | - Alexander G. Tkachenko
- Department of Biology, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (L.Y.N.); (A.G.T.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, The Ural Branch of Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y. Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (E.R.N.); (R.O.S.); (D.A.M.); (R.Y.S.); (M.G.U.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, The Ural Branch of Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim G. Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia; (E.R.N.); (R.O.S.); (D.A.M.); (R.Y.S.); (M.G.U.)
| |
Collapse
|
4
|
Lima Oliveira R, Ledwa KA, Chernyayeva O, Praetz S, Schlesiger C, Kepinski L. Cerium Oxide Nanoparticles Confined in Doped Mesoporous Carbons: A Strategy to Produce Catalysts for Imine Synthesis. Inorg Chem 2023; 62:13554-13565. [PMID: 37555784 DOI: 10.1021/acs.inorgchem.3c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A group of (doped N or P) carbons were synthesized using soluble starch as a carbon precursor. Further, ceria nanoparticles (NPs) were confined into these (doped) carbon materials. The obtained solids were characterized by various techniques such as N2 physisorption, XRD, TEM, SEM, XPS, and XAS. These materials were used as catalysts for the oxidative coupling between benzyl alcohol and aniline as the model reaction. Ceria immobilized on mesoporous-doped carbon shows higher activity than the other materials, benchmark catalysts, and most of the previously reported catalysts. The control of the ceria NP size, the presence of Ce3+ cations, and an increment in the disorder in the ceria NP structure caused by a support-ceria interaction could increase the number of oxygen vacancies and improve its catalytic performance. CN-meso/CeO2 was also used as the catalyst for a rich scope of substrates, such as substituted aromatic alcohols, linear alcohols, and different types of amines. The influence of various reaction parameters (substrate content, reaction temperature, and catalyst content) on the activity of this catalyst was also checked.
Collapse
Affiliation(s)
- Rafael Lima Oliveira
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Karolina A Ledwa
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Olga Chernyayeva
- Institute of Physical Chemistry of the Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Sebastian Praetz
- Department of Optics and Atomic Physics, Technische Universitat Berlin, 10623 Berlin, Germany
| | - Christopher Schlesiger
- Department of Optics and Atomic Physics, Technische Universitat Berlin, 10623 Berlin, Germany
| | - Leszek Kepinski
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|
5
|
Kharazmi A, Ghorbani-Vaghei R, Kharazmi A, Azadbakht R, Koolivand M, Karakaya I, Karimi-Nami R. Reduced graphene oxide/palladium nanoparticle bonded to N,N'-bis(2-aminophenyl)-1,2-ethanediamine: a new, highly efficient and recyclable heterogeneous catalyst for direct synthesis of 2-substituted benzimidazoles via acceptorless dehydrogenative coupling of alcohols and aromatic diamine. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-05003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Karami N, Zarnegaryan A. Fabrication of immobilized molybdenum complex on functionalized graphene oxide as a novel catalyst for the synthesis of benzothiazoles. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Noorbakhsh M, Moghadam M, Jamehbozorgi S. Design, synthesis, and characterization of a new efficient and reusable Ru complex immobilized on nano-silica for oxidation of alcohols. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Nakayama T, Harada S, Kikkawa S, Hikawa H, Azumaya I. Palladium‐Catalyzed Dehydrogenative Synthesis of Imidazoquinolines in Water. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taku Nakayama
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shogo Harada
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| |
Collapse
|
9
|
Synthesis, characterization and application of magnetic mesoporous Fe3O4@Fe-Cu/MCM‐41 as efficient and recyclable nanocatalyst for the Buchwald-Hartwig C-N cross-coupling reaction. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
A Lindqvist type hexamolybdate [Mo6O19]-modified graphene oxide hybrid catalyst: Highly efficient for the synthesis of benzimidazoles. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Dehbanipour Z, Zarnegareyan A. Magnetic nanoparticles supported a palladium bis(benzothiazole) complex: A novel efficient and recyclable catalyst for the synthesis of benzimidazoles and benzothiazoles from benzyl alcohol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Synthesis of new 1,2-disubstituted benzimidazole analogs as potent inhibitors of β-Glucuronidase and in silico study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Li P, Zhang T, Mushtaq MA, Wu S, Xiang X, Yan D. Research Progress in Organic Synthesis by Means of Photoelectrocatalysis. CHEM REC 2021; 21:841-857. [PMID: 33656241 DOI: 10.1002/tcr.202000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/20/2023]
Abstract
The rapid development of radical chemistry has spurred several innovative strategies for organic synthesis. The novel approaches for organic synthesis play a critical role in promoting and regulating the single-electron redox activity. Among them, photoelectrocatalysis (PEC) has attained considerable attention as the most promising strategy to convert organic compounds into fine chemicals. This review highlights the current progress in organic synthesis through PEC, including various catalytic reactions, catalyst systems and practical applications. The numerous catalytic reactions suffer the high overpotential and poor conversion efficiency, depending on the design of electrolyzers and the reaction mechanisms. We also considered the recent developments with special emphasis on scientific problems and efficient solutions, which enhance accessibility to utilize and further develop the photoelectrocatalytic technology for the specific chemical bonds formation and the fabrication of numerous catalytic systems.
Collapse
Affiliation(s)
- Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Muhammad Asim Mushtaq
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Siqin Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|