Li XL, Wang A, Li Y, Gao C, Cui M, Xiao HP, Zhou L. Two Chiral Yb
III Enantiomeric Pairs with Distinct Enantiomerically Pure N-Donor Ligands Presenting Significant Differences in Photoluminescence, Circularly Polarized Luminescence, and Second-Harmonic Generation.
Inorg Chem 2023;
62:4351-4360. [PMID:
36847208 DOI:
10.1021/acs.inorgchem.3c00106]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Using enantiomerically pure bidentate and tridentate N-donor ligands (1LR/1LS and 2LR/2LS) to replace two coordinated H2O molecules of Yb(tta)3(H2O)2, respectively, two eight- and nine-coordinated YbIII enantiomeric pairs, namely, Yb(tta)31LR/Yb(tta)31LS (Yb-R-1/Yb-S-1) and [Yb(tta)32LR]·CH3CN/[Yb(tta)32LS]·CH3CN (Yb-R-2/Yb-S-2), were isolated, in which Htta = 2-thenoyltrifluoroacetone, 1LR/1LS = (-)/(+)-4,5-pinene-2,2'-bipyridine, and 2LR/2LS = (-)/(+)-2,6-bis(4',5'-pinene-2'-pyridyl)pyridine. Interestingly, they not only present distinct degrees of chirality but also show large differences in near-infrared (NIR) photoluminescence (PL), circularly polarized luminescence (CPL), and second-harmonic generation (SHG). Eight-coordinated Yb-R-1 with an asymmetric bidentate 1LR ligand has a high NIR-PL quantum yield (1.26%) and a long decay lifetime (20 μs) at room temperature, being more than two times those (0.48%, 8 μs) of nine-coordinated Yb-R-2 with a C2-symmetric tridentate 2LR ligand. In addition, Yb-R-1 displays an efficient CPL with a luminescence dissymmetry factor glum = 0.077, being 4 × Yb-R-2 (0.018). In particular, Yb-R-1 presents a strong SHG response (0.8 × KDP), which is 8 × Yb-R-2 (0.1 × KDP). More remarkably, the precursor Yb(tta)3(H2O)2 exhibits a strong third-harmonic generation (THG) response (41 × α-SiO2), while the introduction of chiral N-donors results in the switching of THG to SHG. Our interesting findings provide new insights into both the functional regulation and switching in multifunctional lanthanide molecular materials.
Collapse