1
|
Decomposition of Naphthalene by Dielectric Barrier Discharge in Conjunction with a Catalyst at Atmospheric Pressure. Catalysts 2022. [DOI: 10.3390/catal12070740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, coaxial dielectric barrier discharge (DBD) plasma, in conjunction with a metal oxide catalyst, was used to degrade naphthalene. The characteristics of plasma discharge were studied by measuring voltage and current waveforms and the Lissajous figure. The effects of different parameters of the process on naphthalene decomposition in air were investigated. XRD, BET, and SEM data were used to investigate the nature, specific surface area, and surface morphology of the catalyst. The results show that the mineralization of naphthalene reached 82.2% when the initial naphthalene concentration was 21 ppm and the total gas flow rate was 1 L/min in the DBD reactor filled with Al2O3. The mineralization of naphthalene first increased and then became stable with the increase in treatment time and discharge power. The TiO2 catalyst has more apparent advantages than the two other studied catalysts in terms of the removal efficiency and mineralization of naphthalene due to this catalyst’s large specific surface area, porous structure, and photocatalytic properties. In addition, the introduction of a small amount of water vapor can promote the mineralization and CO2 selectivity of naphthalene. With further increases in the water vapor, Fe2O3 has a negative effect on the naphthalene oxidation due to its small pore size. The TiO2 catalyst can overcome the adverse effects of water molecule attachment due to its photocatalytic properties.
Collapse
|
2
|
Liu X, Liu J, Chen J, Zhong F. Catalytic conversion and DFT analysis of post DDBD-catalysis system for degradation of toluene, ethyl acetate and acetone with different metal-oxides catalysts. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Abstract
The application of plasma in the field of volatile organic compounds (VOCs) can be traced back to the 1990s and has gradually developed into an important research field. In this regard, this article primarily sorts and analyzes the literature on the “application of plasma in the field of VOCs” in the Web of Science core collection database from 1992 to 2021 and, subsequently, obtains important data and trends, including the annual number of articles published, country, institution analysis, and journal, as well as discipline analysis, etc. The results show that China is not only in a leading position in the field of research, but also has six top-ten research institutions. This field has more research results in engineering, chemistry, physics, and environmental disciplines. In addition, this article summarizes dielectric barrier discharge (DBD) and titanium-containing catalysts, which represent the discharge characteristics and type of catalyst highlighted through the hot keywords. This review will provide certain guidance for future, related research.
Collapse
|