1
|
Rich A, Rubin W, Rickli S, Akhmetshina T, Cossu J, Berger L, Magno M, Nuss K, Schaller B, Löffler J. Development of an implantable sensor system for in vivo strain, temperature, and pH monitoring: comparative evaluation of titanium and resorbable magnesium plates. Bioact Mater 2025; 43:603-618. [PMID: 39498360 PMCID: PMC11532740 DOI: 10.1016/j.bioactmat.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
Biodegradable magnesium is a highly desired material for fracture fixation implants because of its good mechanical properties and ability to completely dissolve in the body over time, eliminating the need for a secondary surgery to remove the implant. Despite extensive research on these materials, there remains a dearth of information regarding critical factors that affect implant performance in clinical applications, such as the in vivo pH and mechanical loading conditions. We developed a measurement system with implantable strain, temperature, pH and motion sensors to characterize magnesium and titanium plates, fixating bilateral zygomatic arch osteotomies in three Swiss alpine sheep for eight weeks. pH 1-2 mm above titanium plates was 6.6 ± 0.4, while for magnesium plates it was slightly elevated to 7.4 ± 0.8. Strains on magnesium plates were higher than on titanium plates, possibly due to the lower Young's modulus of magnesium. One magnesium plate experienced excessive loading, which led to plate failure within 31 h. This is, to our knowledge, the first in vivo strain, temperature, and pH data recorded for magnesium implants used for fracture fixation. These results provide insight into magnesium degradation and its influence on the in vivo environment, and may help to improve material and implant design for future clinical applications.
Collapse
Affiliation(s)
- A.M. Rich
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - W. Rubin
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - S. Rickli
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - T. Akhmetshina
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J. Cossu
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - L. Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - M. Magno
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - K.M. Nuss
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - B. Schaller
- Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - J.F. Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Taylor CR, Nott JK, Ratnasena NH, Cohen JM, Herr HM. Non-pyrogenicity and biocompatibility of parylene-coated magnetic bead implants. Front Bioeng Biotechnol 2024; 12:1290453. [PMID: 38444650 PMCID: PMC10912624 DOI: 10.3389/fbioe.2024.1290453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
Clinical grade magnetic bead implants have important applications in interfacing with the human body, providing contactless mechanical attachment or wireless communication through human tissue. We recently developed a new strategy, magnetomicrometry, that uses magnetic bead implants as passive communication devices to wirelessly sense muscle tissue lengths. We manufactured clinical-grade magnetic bead implants and verified their biocompatibility via intramuscular implantation, cytotoxicity, sensitization, and intracutaneous irritation testing. In this work, we test the pyrogenicity of the magnetic bead implants via a lagomorph model, and we test the biocompatibility of the magnetic bead implants via a full chemical characterization and toxicological risk assessment. Further, we test the cleaning, sterilization, and dry time of the devices that are used to deploy these magnetic bead implants. We find that the magnetic bead implants are non-pyrogenic and biocompatible, with the insertion device determined to be safe to clean, sterilize, and dry in a healthcare setting. These results provide confidence for the safe use of these magnetic bead implants in humans.
Collapse
Affiliation(s)
- Cameron R. Taylor
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | | | - Hugh M. Herr
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
3
|
Liu P, Liu X, Yang L, Qian Y, Lu Q, Shi A, Wei S, Zhang X, Lv Y, Xiang J. Enhanced hemocompatibility and rapid magnetic anastomosis of electrospun small-diameter artificial vascular grafts. Front Bioeng Biotechnol 2024; 12:1331078. [PMID: 38328445 PMCID: PMC10847591 DOI: 10.3389/fbioe.2024.1331078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Background: Small-diameter (<6 mm) artificial vascular grafts (AVGs) are urgently required in vessel reconstructive surgery but constrained by suboptimal hemocompatibility and the complexity of anastomotic procedures. This study introduces coaxial electrospinning and magnetic anastomosis techniques to improve graft performance. Methods: Bilayer poly(lactide-co-caprolactone) (PLCL) grafts were fabricated by coaxial electrospinning to encapsulate heparin in the inner layer for anticoagulation. Magnetic rings were embedded at both ends of the nanofiber conduit to construct a magnetic anastomosis small-diameter AVG. Material properties were characterized by micromorphology, fourier transform infrared (FTIR) spectra, mechanical tests, in vitro heparin release and hemocompatibility. In vivo performance was evaluated in a rabbit model of inferior vena cava replacement. Results: Coaxial electrospinning produced PLCL/heparin grafts with sustained heparin release, lower platelet adhesion, prolonged clotting times, higher Young's modulus and tensile strength versus PLCL grafts. Magnetic anastomosis was significantly faster than suturing (3.65 ± 0.83 vs. 20.32 ± 3.45 min, p < 0.001) and with higher success rate (100% vs. 80%). Furthermore, magnetic AVG had higher short-term patency (2 days: 100% vs. 60%; 7 days: 40% vs. 0%) but similar long-term occlusion as sutured grafts. Conclusion: Coaxial electrospinning improved hemocompatibility and magnetic anastomosis enhanced implantability of small-diameter AVG. Short-term patency was excellent, but further optimization of anticoagulation is needed for long-term patency. This combinatorial approach holds promise for vascular graft engineering.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Graduate School, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yerong Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aihua Shi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Zhang Y, Wu X, Vadlamani RA, Lim Y, Kim J, David K, Gilbert E, Li Y, Wang R, Jiang S, Wang A, Sontheimer H, English DF, Emori S, Davalos RV, Poelzing S, Jia X. Submillimeter Multifunctional Ferromagnetic Fiber Robots for Navigation, Sensing, and Modulation. Adv Healthc Mater 2023; 12:e2300964. [PMID: 37473719 PMCID: PMC10799194 DOI: 10.1002/adhm.202300964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
Collapse
Affiliation(s)
- Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Ram Anand Vadlamani
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youngmin Lim
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Earl Gilbert
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - You Li
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruixuan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Satoru Emori
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Coelho BJ, Pinto JV, Martins J, Rovisco A, Barquinha P, Fortunato E, Baptista PV, Martins R, Igreja R. Parylene C as a Multipurpose Material for Electronics and Microfluidics. Polymers (Basel) 2023; 15:polym15102277. [PMID: 37242852 DOI: 10.3390/polym15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(p-xylylene) derivatives, widely known as Parylenes, have been considerably adopted by the scientific community for several applications, ranging from simple passive coatings to active device components. Here, we explore the thermal, structural, and electrical properties of Parylene C, and further present a variety of electronic devices featuring this polymer: transistors, capacitors, and digital microfluidic (DMF) devices. We evaluate transistors produced with Parylene C as a dielectric, substrate, and encapsulation layer, either semitransparent or fully transparent. Such transistors exhibit steep transfer curves and subthreshold slopes of 0.26 V/dec, negligible gate leak currents, and fair mobilities. Furthermore, we characterize MIM (metal-insulator-metal) structures with Parylene C as a dielectric and demonstrate the functionality of the polymer deposited in single and double layers under temperature and AC signal stimuli, mimicking the DMF stimuli. Applying temperature generally leads to a decrease in the capacitance of the dielectric layer, whereas applying an AC signal leads to an increase in said capacitance for double-layered Parylene C only. By applying the two stimuli, the capacitance seems to suffer from a balanced influence of both the separated stimuli. Lastly, we demonstrate that DMF devices with double-layered Parylene C allow for faster droplet motion and enable long nucleic acid amplification reactions.
Collapse
Affiliation(s)
- Beatriz J Coelho
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Joana V Pinto
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Jorge Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana Rovisco
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro Barquinha
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rui Igreja
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Zhang L, Dai W, Gao C, Wei W, Huang R, Zhang X, Yu Y, Yang X, Cai Q. Multileveled Hierarchical Hydrogel with Continuous Biophysical and Biochemical Gradients for Enhanced Repair of Full-Thickness Osteochondral Defect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209565. [PMID: 36870325 DOI: 10.1002/adma.202209565] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/31/2023] [Indexed: 05/12/2023]
Abstract
The repair of hierarchical osteochondral defect requires sophisticated gradient reestablishment; however, few strategies for continuous gradient casting consider the relevance to clinical practice regarding cell adaptability, multiple gradient elements, and precise gradient mirroring native tissue. Here, a hydrogel with continuous gradients in nano-hydroxyapatite (HA) content, mechanical, and magnetism is developed using synthesized superparamagnetic HA nanorods (MagHA) that easily respond to a brief magnetic field. To precisely reconstruct osteochondral tissue, the optimized gradient mode is calculated according to magnetic resonance imaging (MRI) of healthy rabbit knees. Then, MagHA are patterned to form continuous biophysical and biochemical gradients, consequently generating incremental HA, mechanical, and electromagnetic cues under an external magnetic stimulus. To make such depth-dependent biocues work, an adaptable hydrogel is developed to facilitate cell infiltration. Furthermore, this approach is applied in rabbit full-thickness osteochondral defects equipped with a local magnetic field. Surprisingly, this multileveled gradient composite hydrogel repairs osteochondral unit in a perfect heterogeneous feature, which mimics the gradual cartilage-to-subchondral transition. Collectively, this is the first study that combines an adaptable hydrogel with magneto-driven MagHA gradients to achieve promising outcomes in osteochondral regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenli Dai
- Peking University Third Hospital, Beijing, 100191, China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruiran Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Taylor CR, Clark WH, Clarrissimeaux EG, Yeon SH, Carty MJ, Lipsitz SR, Bronson RT, Roberts TJ, Herr HM. Clinical viability of magnetic bead implants in muscle. Front Bioeng Biotechnol 2022; 10:1010276. [PMID: 36394042 PMCID: PMC9640959 DOI: 10.3389/fbioe.2022.1010276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Human movement is accomplished through muscle contraction, yet there does not exist a portable system capable of monitoring muscle length changes in real time. To address this limitation, we previously introduced magnetomicrometry, a minimally-invasive tracking technique comprising two implanted magnetic beads in muscle and a magnetic field sensor array positioned on the body's surface adjacent the implanted beads. The implant system comprises a pair of spherical magnetic beads, each with a first coating of nickel-copper-nickel and an outer coating of Parylene C. In parallel work, we demonstrate submillimeter accuracy of magnetic bead tracking for muscle contractions in an untethered freely-roaming avian model. Here, we address the clinical viability of magnetomicrometry. Using a specialized device to insert magnetic beads into muscle in avian and lagomorph models, we collect data to assess gait metrics, bead migration, and bead biocompatibility. For these animal models, we find no gait differences post-versus pre-implantation, and bead migration towards one another within muscle does not occur for initial bead separation distances greater than 3 cm. Further, using extensive biocompatibility testing, the implants are shown to be non-irritant, non-cytotoxic, non-allergenic, and non-irritating. Our cumulative results lend support for the viability of these magnetic bead implants for implantation in human muscle. We thus anticipate their imminent use in human-machine interfaces, such as in control of prostheses and exoskeletons and in closed-loop neuroprosthetics to aid recovery from neurological disorders.
Collapse
Affiliation(s)
- Cameron R. Taylor
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - William H. Clark
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, United States
| | - Ellen G. Clarrissimeaux
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Seong Ho Yeon
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthew J. Carty
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | | | - Thomas J. Roberts
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, United States
| | - Hugh M. Herr
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Bukhamsin A, Ait Lahcen A, Filho JDO, Shetty S, Blilou I, Kosel J, Salama KN. Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming. Biosens Bioelectron 2022; 214:114515. [DOI: 10.1016/j.bios.2022.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
|
9
|
Luo X, Yu Q, Liu Y, Gai W, Ye L, Yang L, Cui Y. Closed-Loop Diabetes Minipatch Based on a Biosensor and an Electroosmotic Pump on Hollow Biodegradable Microneedles. ACS Sens 2022; 7:1347-1360. [PMID: 35442623 DOI: 10.1021/acssensors.1c02337] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing a miniaturized, low-cost, and smart closed-loop system for diabetes could significantly improve life quality and benefit millions of people. Conventional closed-loop devices are large in size and exorbitant. Here, we unprecedentedly demonstrate an electrically controlled flexible closed-loop patch for continuous diabetes management by integrating hollow biodegradable microneedles with a biosensing device and an electroosmotic pump. The hollow microneedles were fabricated using a combination of soft lithography and micromachining. The outer layer of the microneedles was functionalized to serve as a biosensing device for the in situ sensitive and accurate monitoring of interstitial glucose. The inner layer of the microneedles was integrated with a flexible electroosmotic pump to deliver insulin, and the delivery rate was electrically controlled by the glucose level from the biosensing device. The closed-loop system successfully stabilized the blood glucose levels of diabetic rats in a normal and safe range. The system is painless, miniaturized, cost-effective, and flexible. It is anticipated that it could open up exciting new avenues for fundamental studies of new closed-loop devices as well as practical applications for diabetes management.
Collapse
Affiliation(s)
- Xiaojin Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Qi Yu
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China
| | - Yiqun Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Weixin Gai
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Le Ye
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
10
|
Park H, Choi W, Oh S, Kim YJ, Seok S, Kim J. A Study on Biocompatible Polymer-Based Packaging of Neural Interface for Chronic Implantation. MICROMACHINES 2022; 13:mi13040516. [PMID: 35457821 PMCID: PMC9027597 DOI: 10.3390/mi13040516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
Abstract
This paper proposed and verified the use of polymer-based packaging to implement the chronic implantation of neural interfaces using a combination of a commercial thermal epoxy and a thin parylene film. The packaging’s characteristics and the performance of the vulnerable interface between the thermal epoxy layer and polyimide layer, which is mainly used for neural electrodes and an FPCB, were evaluated through in vitro, in vivo, and acceleration experiments. The performance of neural interfaces—composed of the combination of the thermal epoxy and thin parylene film deposition as encapsulation packaging—was evaluated by using signal acquisition experiments based on artificial stimulation signal transmissions through in vitro and in vivo experiments. It has been found that, when commercial thermal epoxy normally cured at room temperature was cured at higher temperatures of 45 °C and 65 °C, not only is its lifetime increased with about twice the room-temperature-based curing conditions but also an interfacial adhesion is higher with more than twice the room-temperature-based curing conditions. In addition, through in vivo experiments using rats, it was confirmed that bodily fluids did not flow into the interface between the thermal epoxy and FPCB for up to 18 months, and it was verified that the rats maintained healthy conditions without occurring an immune response in the body to the thin parylene film deposition on the packaging’s surface.
Collapse
Affiliation(s)
- HyungDal Park
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Wonsuk Choi
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea
| | - Seonghwan Oh
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea
| | - Yong-Jun Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
- Correspondence: (Y.-J.K.); (S.S.); (J.K.)
| | - Seonho Seok
- Center for Nanoscience and Nanotechnology (C2N), University-Paris-Saclay, 91400 Orsay, France
- Correspondence: (Y.-J.K.); (S.S.); (J.K.)
| | - Jinseok Kim
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- Correspondence: (Y.-J.K.); (S.S.); (J.K.)
| |
Collapse
|
11
|
Montero J, Clemente F, Cipriani C. Feasibility of generating 90 Hz vibrations in remote implanted magnets. Sci Rep 2021; 11:15456. [PMID: 34326398 PMCID: PMC8322332 DOI: 10.1038/s41598-021-94240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Limb amputation not only reduces the motor abilities of an individual, but also destroys afferent channels that convey essential sensory information to the brain. Significant efforts have been made in the area of upper limb prosthetics to restore sensory feedback, through the stimulation of residual sensory elements. Most of the past research focused on the replacement of tactile functions. On the other hand, the difficulties in eliciting proprioceptive sensations using either haptic or (neural) electrical stimulation, has limited researchers to rely on sensory substitution. Here we propose the myokinetic stimulation interface, that aims at restoring natural proprioceptive sensations by exploiting the so-called tendon illusion, elicited through the vibration of magnets implanted inside residual muscles. We present a prototype which exploits 12 electromagnetic coils to vibrate up to four magnets implanted in a forearm mockup. The results demonstrated that it is possible to generate highly directional and frequency-selective vibrations. The system proved capable of activating a single magnet, out of many. Hence, this interface constitutes a promising approach to restore naturally perceived proprioception after an amputation. Indeed, by implanting several magnets in independent muscles, it would be possible to restore proprioceptive sensations perceived as coming from single digits.
Collapse
Affiliation(s)
- Jordan Montero
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Francesco Clemente
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Christian Cipriani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
| |
Collapse
|