1
|
Abou-Elyazed AS, Ftooh AI, Sun Y, Ashry AG, Shaban AKF, El-Nahas AM, Yousif AM. Solvent-Free Synthesis of HKUST-1 with Abundant Defect Sites and Its Catalytic Performance in the Esterification Reaction of Oleic Acid. ACS OMEGA 2024; 9:37662-37671. [PMID: 39281896 PMCID: PMC11391445 DOI: 10.1021/acsomega.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024]
Abstract
HKUST-1 has received increasing attention because of its potential applications in many fields, such as heterogeneous catalysis, sensors, gas storage, and separation. Herein, we report that HKUST-1 can be facilely prepared by heating a ground mixture of copper nitrate trihydrate and 1,3,5-benzenetricarboxylic acid in an autoclave at 80 °C for 10 h. The data from nitrogen sorption show that the obtained material, named HKUST-1-free, possesses a high BET specific surface area of 1671 m2/g and a pore volume of 0.8 cm3/g. The results from acid-base titration indicate that the number of defect sites in HKUST-1-free is more than that in HKUST-1-solvent prepared by the solvothermal method. As a heterogeneous catalyst, HKUST-1-free gave a high yield (91%) of methyl oleate in the esterification reaction of oleic acid with methanol at room temperature compared to HKUST-1-solvent (70%). Additionally, it is proven that HKUST-1-free is a heterogeneous catalyst and can be reused.
Collapse
Affiliation(s)
- Ahmed S Abou-Elyazed
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Abdelhalim I Ftooh
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Yinyong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Asmaa G Ashry
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Amira K F Shaban
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ahmed M El-Nahas
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Ahmed M Yousif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, KSA
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| |
Collapse
|
2
|
Sk M, Kar S, Dewangan JK, Chowdhury M. Engineering linker defects in functionalized UiO-66 MOF nanoparticles for oil-in-water Pickering emulsion stabilization. Dalton Trans 2023; 52:11886-11896. [PMID: 37561075 DOI: 10.1039/d3dt01470c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Designing metal-organic framework (MOF)-based solid nanoparticles to stabilize Pickering emulsions by fine-tuning their hydrophobicity and lipophobicity is vital for essential applications and fundamental understanding. We demonstrate in situ grafting of palmitic acid in UiO-66 MOF through its linker defects. Our designed and activated nanoparticles (denoted as UP') stabilized the Pickering emulsions of n-heptane-in-water. Furthermore, we showed how UP' stabilized emulsion droplets disperse in media by covering each tiny droplet with a nanoscale layer made of UP'. To support our claim, we carried out the freeze-drying process to remove the liquid part from the emulsion, leaving behind the solid shell-like microstructures that we further characterized through several microscopic techniques. The stable n-heptane-in-water emulsion was confirmed by dilution (drop test), conductivity, zeta potential, and theoretical surface electrostatic potential measurements. Rheological studies indicate that the Pickering emulsions of n-heptane-in-water stabilized by UP' are much more resistant to deformation and flow imparting higher (mechanical) stability and shelf-life. Pickering emulsions stabilized by UP' emerged as a versatile way to design smart functional materials of UiO-66 through engineering linker defects that may have potential applications in interfacial catalysis, dye or contaminant separation, etc.
Collapse
Affiliation(s)
- Mostakim Sk
- Lab of Soft Interfaces, Department of Metallurgical Engineering & Materials Science, Indian Institute Technology Bombay, Mumbai 400076, India.
| | - Salini Kar
- Lab of Soft Interfaces, Department of Metallurgical Engineering & Materials Science, Indian Institute Technology Bombay, Mumbai 400076, India.
| | - Jayant K Dewangan
- Lab of Soft Interfaces, Department of Metallurgical Engineering & Materials Science, Indian Institute Technology Bombay, Mumbai 400076, India.
| | - Mithun Chowdhury
- Lab of Soft Interfaces, Department of Metallurgical Engineering & Materials Science, Indian Institute Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
3
|
Zhang Q, Wang J, Zhang S, Ma J, Cheng J, Zhang Y. Zr-Based Metal-Organic Frameworks for Green Biodiesel Synthesis: A Minireview. Bioengineering (Basel) 2022; 9:700. [PMID: 36421101 PMCID: PMC9687256 DOI: 10.3390/bioengineering9110700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
Metal-organic frameworks (MOFs) have widespread application prospects in the field of catalysis owing to their functionally adjustable metal sites and adjustable structure. In this minireview, we summarize the current advancements in zirconium-based metal-organic framework (Zr-based MOF) catalysts (including single Zr-based MOFs, modified Zr-based MOFs, and Zr-based MOF derivatives) for green biofuel synthesis. Additionally, the yields, conversions, and reusability of Zr-based MOF catalysts for the production of biodiesel are compared. Finally, the challenges and future prospects regarding Zr-based MOFs and their derivatives for catalytic application in the biorefinery field are highlighted.
Collapse
Affiliation(s)
- Qiuyun Zhang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Jialu Wang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Resource and Environmental Engineering, Anshun University, Anshun 561000, China
| | - Shuya Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Jingsong Cheng
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Yutao Zhang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| |
Collapse
|
4
|
Peng L, Zhao Y, Yang T, Tong Z, Tang Z, Orita A, Qiu R. Zirconium-Based Catalysts in Organic Synthesis. Top Curr Chem (Cham) 2022; 380:41. [PMID: 35951161 DOI: 10.1007/s41061-022-00396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Zirconium is a silvery-white malleable and ductile metal at room temperature with a crustal abundance of 162 ppm. Its compounds, showing Lewis acidic behavior and high catalytic performance, have been recognized as a relatively cheap, low-toxicity, stable, green, and efficient catalysts for various important organic transformations. Commercially available inorganic zirconium chloride was widely applied as a catalyst to accelerate amination, Michael addition, and oxidation reactions. Well-designed zirconocene perfluorosulfonates can be applied in allylation, acylation, esterification, etc. N-Chelating oganozirconium complexes accelerate polymerization, hydroaminoalkylation, and CO2 fixation efficiently. In this review, the applications of both commercially available and synthesized zirconium catalysts in organic reactions in the last 5 years are highlighted. Firstly, the properties and application of zirconium and its compounds are simply introduced. After presenting the superiority of zirconium compounds, their applications as catalysts to accelerate organic transformations are classified and presented in detail. On the basis of different kinds of zirconium catalysts, organic reactions accelerated by inorganic zirconium catalysts, zirconium catalysts bearing Cp, and organozirconium catalysts without Cp are summarized, and the plausible reaction mechanisms are presented if available.
Collapse
Affiliation(s)
- Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.,Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Yanting Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Akihiro Orita
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
5
|
Li Z, Hu R, Ye S, Song J, Liu L, Qu J, Song W, Cao C. High-Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry 2022; 28:e202104588. [PMID: 35253287 DOI: 10.1002/chem.202104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 01/11/2023]
Abstract
Catalyst wettability regulation has emerged as an attractive approach for high catalytic performance for the past few years. By introducing appropriate wettability, the molecule diffusion of reactants and products can be enhanced, leading to high activity. Besides this, undesired molecules are isolated for high selectivity of target products and long-term stability of catalyst. Herein, we summarize wettability-induced high-performance heterogeneous thermocatalysis in recent years, including hydrophilicity, hydrophobicity, hybrid hydrophilicity-hydrophobicity, amphiphilicity, and superaerophilicity. Relevant reactions are further classified and described according to the reason for the performance improvement. It should be pointed out that studies of utilizing superaerophilicity to improve heterogeneous thermocatalytic performance have been included for the first time, so this is a comparatively comprehensive review in this field as yet.
Collapse
Affiliation(s)
- Zhaohua Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russian Federation
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Helmiyati H, Budiman Y, Abbas GH, Dini FW, Khalil M. Highly efficient synthesis of biodiesel catalyzed by a cellulose@hematite-zirconia nanocomposite. Heliyon 2021; 7:e06622. [PMID: 33855246 PMCID: PMC8027282 DOI: 10.1016/j.heliyon.2021.e06622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/25/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
The depletion of fossil fuels calls for the development of renewable alternatives such as biodiesel and has inspired much research on catalysts for the production of biodiesel through the esterification of biomass-derived materials. Herein, a green heterogeneous catalyst for highly efficient biodiesel synthesis was fabricated from rice straw-derived cellulose, hematite, and zirconia and was shown to contain porous irregularly shaped α-Fe2O3-ZrO2 composites (average particle size = 42.5 nm) evenly distributed on the nanocellulose surface. The optimal catalyst (nanocellulose:α-Fe2O3-ZrO2 = 2:1, w/w) afforded biodiesel in a yield of 92.50% and with specifications close to those prescribed by international standards. This catalyst could be reused for up to five cycles without a marked activity loss, with the biodiesel yield in the fifth cycle equaling 80.0%. The developed nanocomposite holds great promise for cutting the costs of biodiesel production, as it is derived from biodegradable raw materials and is renewable, non-corrosive, easy to handle, and green. In addition, the large-scale discharge of this catalyst after use does not pose a hazard to the environment.
Collapse
Affiliation(s)
- Helmiyati Helmiyati
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Yuni Budiman
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Gusma Harfiana Abbas
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Fitriyah Wulan Dini
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| |
Collapse
|