1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Doan VTC, Dao TM, Huynh TA, Nguyen TT, Tran PH. A simple and efficient synthesis of 5-hydroxymethylfurfural from carbohydrates using acidic ionic liquid grafted on silica gel. RSC Adv 2024; 14:17480-17490. [PMID: 38818357 PMCID: PMC11137499 DOI: 10.1039/d4ra02487g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The catalytic application of 3-(4-sulfobutyl)-1H-imidazole-3-ium chloride immobilized on activated silica gel (SiO2-Imi-SO3H) for the production of 5-hydroxymethylfurfural is described here for the first time. This material was synthesized using a three-step method involving the grafting of chloropropyl groups onto activated silica gel, the substitution of zwitterions, and the acidification of zwitterions to form silica-supported ionic liquid. The successful immobilization of the IL on silica gel was confirmed through energy-dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and elemental mapping. SiO2-Imi-SO3H-2 demonstrated good catalytic activity and recycling ability in fructose dehydration to 5-HMF. Several conditions for reaction were investigated, and an excellent 5-HMF yield (94.1%) was obtained after 4 h at 160 °C in dimethyl sulfoxide (DMSO) from fructose. Furthermore, a mechanism was proposed, the catalyst's reusability was investigated, and the catalyst was applied for the conversion of glucose to 5-HMF with other metal salts.
Collapse
Affiliation(s)
- Vinh Thanh Chau Doan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Faculty of Interdisciplinary Science, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Thong Minh Dao
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Thu Anh Huynh
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - The Thai Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Ma H, Yu B, Yue C, Qiao Y, Li N, Cai T, Teng J. Organocatalytic Dehydration of Fructose-Based Carbohydrates into 5-Hydroxymethylfurfural in the Presence of a Neutral Inner Salt. ACS OMEGA 2023; 8:16345-16355. [PMID: 37179607 PMCID: PMC10173322 DOI: 10.1021/acsomega.3c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
A series of organic sulfonate inner salts, viz., aprotic imidazolium- and pyridinium-based zwitterions bearing sulfonate groups (-SO3-), were synthesized for the catalytic conversion of fructose-based carbohydrates into 5-hydroxymethylfurfural (HMF). The dramatic cooperation of both the cation and anion of inner salts played a crucial role in the HMF formation. The inner salts have excellent solvent compatibility, and 4-(pyridinium)butane sulfonate (PyBS) affords the highest catalytic activity with 88.2 and 95.1% HMF yields at almost full conversion of fructose in low-boiling-point protic solvent isopropanol (i-PrOH) and aprotic solvent dimethyl sulfoxide (DMSO), respectively. The substrate tolerance of aprotic inner salt was also studied through changing the substrate type, demonstrating its excellent specificity for catalytic valorization of fructose-moiety-containing C6 sugars, such as sucrose and inulin. Meanwhile, the neutral inner salt is structurally stable and reusable; after being recycled four times, the catalyst showed no appreciable loss of its catalytic activity. The plausible mechanism has been elucidated based on the dramatic cooperative effect of both the cation and sulfonate anion of inner salts. The noncorrosive, nonvolatile, and generally nonhazardous aprotic inner salt used in this study will benefit many biochemical-related applications.
Collapse
Affiliation(s)
- Hao Ma
- College
of Chemistry, Guangdong University of Petrochemical
Technology, Maoming 525000, P. R. China
| | - Biao Yu
- School
of Chemistry and Chemical Engineering, Lingnan
Normal University, Zhanjiang 524048, P. R. China
| | - Chaochao Yue
- College
of Chemistry, Guangdong University of Petrochemical
Technology, Maoming 525000, P. R. China
| | - Yanhui Qiao
- College
of Chemistry, Guangdong University of Petrochemical
Technology, Maoming 525000, P. R. China
| | - Ning Li
- College
of Chemical Engineering, Guangdong University
of Petrochemical Technology, Maoming 525000, P. R. China
| | - Tao Cai
- College
of Chemical Engineering, Guangdong University
of Petrochemical Technology, Maoming 525000, P. R. China
| | - Junjiang Teng
- College
of Chemistry, Guangdong University of Petrochemical
Technology, Maoming 525000, P. R. China
| |
Collapse
|
4
|
Wang S, Wang L, Wang Y, Li Y, Fan W, Jing X. Synthesis of Boron-Doped Phenolic Porous Carbon As Efficient Catalyst for the Dehydration of Fructose into 5-Hydroxymethylfurfural. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shujuan Wang
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China
| | - Lu Wang
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China
| | - Ya’nan Wang
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China
| | - Yuefeng Li
- Department of Technology, Kaili Catalyst & New Materials Co., Ltd., Xi’an, Shaanxi 710201, People’s Republic of China
| | - Wei Fan
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an, Shaanxi 710048, People’s Republic of China
| | - Xinli Jing
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China
| |
Collapse
|