1
|
Li D, Shao X, Li X, Qian Y, Wang G, Wei Y, Guo S. Versatile morphology transition of nano-assemblies via ultrasonics/microwave assisted aqueous polymerization-induced self-assembly based on host-guest interaction. ULTRASONICS SONOCHEMISTRY 2024; 107:106901. [PMID: 38735786 PMCID: PMC11179237 DOI: 10.1016/j.ultsonch.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Nano-assemblies have wide applications in biomedicine, functional coatings, Pickering emulsifiers, hydrogels, and so forth. The preparation of assemblies mainly utilizes the polymerization-induced self-assembly (PISA) method, which can produce high-concentration nanoscale assemblies in one step. However, the initiation processes of most reported PISA are limited to thermal initiation. Here, we reported two green and efficient methods for synthesizing nano-assemblies with various morphologies using ultrasound (20 kHz)/ microwave (500 W) assisted aqueous-phase RAFT-PISA in 3 h and 1 h. Cyclodextrin (CD) and styrene (St) nucleating monomer were complexed in a 1:1 ratio. Then, using Poly (ethylene glycol) methyl ether as the macromolecular reversible addition-fragmentation chain transfer (RAFT) agent (PEG-CTA) to control the CD/St complexes, the conversion rate of St monomer was respectively 27 %-60 %, 20 %-30 % within 3 h and 1 h under ultrasonics/microwave assisted PISA. Results showed that the morphologies of the assemblies are not only related to the length of PS block, but also to the assistance types and the remaining monomer concentration. The results showed that only PEG45-b-PS90 and PEG45-b-PS241 assemblies prepared by ultrasonics assisted PISA form evolved lamellaes and vesicles (100 nm), which break through the limitation of kinetic freezing. But the ultrasonic reaction on morphology of assemblies is not all favourable. For one thing, it can promote the movement of particles; for another, it makes reverse morphology transformation and sphere is preferred morphology. Therefore, the main reason of morphology evolution is the remaining monomer concentration of PEG45-b-PS90 and PEG45-b-PS241 assemblies reaches to 55 %-65 %, which promoting the segment movement. The results showed that the morphology of the assemblies prepared by microwave assisted PISA changed from spherical micelles to short rods, and finally to vesicles (120-140 nm) as the length of hydrophobic PS block increases. The kinetic freezing problem was solved in microwave-assisted PISA due to the action of microwaves and more remaining monomer concentration. Both them can boost particles movement.
Collapse
Affiliation(s)
- Dan Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Xin Shao
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Xin Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Yongqiang Qian
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Guxia Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Yen Wei
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China; Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
2
|
Jin B, Hu L, Li X. Mesogenic Ordering-Driven Self-Assembly of Liquid Crystalline Block Copolymers in Solution. Chemistry 2024; 30:e202400312. [PMID: 38454618 DOI: 10.1002/chem.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
With the development of nanotechnology, the preparation of polymeric nanoparticles with nicely defined structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Particularly, by introducing mesogenic ordering as the driving force for the solution-state self-assembly of liquid crystalline (LC) block copolymers (BCPs), micellar nanostructures with different morphologies, especially anisotropic morphologies, can be easily prepared. This review summarizes the recent progress in the solution-state self-assembly of LC BCPs and is mostly focused on four main related aspects, including an in-depth understanding of the mesogenic ordering-driven self-assembly, precise assembly methods, utilization of these methods to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a systematic summary of previous studies but also to provide some useful thinking for the future development of this field.
Collapse
Affiliation(s)
- Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
3
|
Fielden SDP, Derry MJ, Miller A, Topham PD, O’Reilly RK. Triggered Polymersome Fusion. J Am Chem Soc 2023; 145:5824-5833. [PMID: 36877655 PMCID: PMC10021019 DOI: 10.1021/jacs.2c13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 03/07/2023]
Abstract
The contents of biological cells are retained within compartments formed of phospholipid membranes. The movement of material within and between cells is often mediated by the fusion of phospholipid membranes, which allows mixing of contents or excretion of material into the surrounding environment. Biological membrane fusion is a highly regulated process that is catalyzed by proteins and often triggered by cellular signaling. In contrast, the controlled fusion of polymer-based membranes is largely unexplored, despite the potential application of this process in nanomedicine, smart materials, and reagent trafficking. Here, we demonstrate triggered polymersome fusion. Out-of-equilibrium polymersomes were formed by ring-opening metathesis polymerization-induced self-assembly and persist until a specific chemical signal (pH change) triggers their fusion. Characterization of polymersomes was performed by a variety of techniques, including dynamic light scattering, dry-state/cryogenic-transmission electron microscopy, and small-angle X-ray scattering (SAXS). The fusion process was followed by time-resolved SAXS analysis. Developing elementary methods of communication between polymersomes, such as fusion, will prove essential for emulating life-like behaviors in synthetic nanotechnology.
Collapse
Affiliation(s)
| | - Matthew J. Derry
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Alisha
J. Miller
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Paul D. Topham
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Steroid-Based Liquid Crystalline Polymers: Responsive and Biocompatible Materials of the Future. CRYSTALS 2022. [DOI: 10.3390/cryst12071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid-based liquid crystal polymers and co-polymers have come a long way, with new and significant advances being made every year. This paper reviews some of the recent key developments in steroid-based liquid crystal polymers and co-polymers. It covers the structure–property relationship between cholesterol and sterol-based compounds and their corresponding polymers, and the influence of chemical structure and synthesis conditions on the liquid crystalline behaviour. An overview of the nature of self-assembly of these materials in solvents and through polymerisation is given. The role of liquid crystalline properties in the applications of these materials, in the creation of nano-objects, drug delivery and biomedicine and photonic and electronic devices, is discussed.
Collapse
|
5
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
6
|
Chen Q, Li Y, Liu M, Wu X, Shen J, Shen L. Constructing helical nanowires via polymerization-induced self-assembly. RSC Adv 2021; 11:8986-8992. [PMID: 35423399 PMCID: PMC8695331 DOI: 10.1039/d1ra00439e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
While reliable strategies for constructing block copolymer (BCP) nanowires have been developed, helical nanowires are rarely reported in polymerization-induced self-assembly (PISA). Herein, in this work, a new strategy for constructing helical nanowires was developed via PISA mediated by a fluorinated stabilizer block. Ultralong nanowires with helical structure can be readily produced in a wide range of block compositions. In addition, the generality of this strategy was well testified by expanding monomer types. The achiral BCP nano-objects underwent a morphology transition from spheres to helical nanowires during aging. We believe this work will provide a general strategy for producing helical nanowires through PISA of achiral BCPs.
Collapse
Affiliation(s)
- Qiumeng Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Yahui Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Ming Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Xuan Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Xinsan Road, Longwan District Wenzhou 325001 PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Xinsan Road, Longwan District Wenzhou 325001 PR China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| |
Collapse
|