1
|
Zheng T, Ma J, Chen H, Jiang H, Lu S, Shi Z, Liu F, Houk KN, Liang Y. Computational Design of Ligands for the Ir-Catalyzed C5-Borylation of Indoles through Tuning Dispersion Interactions. J Am Chem Soc 2024; 146:25058-25066. [PMID: 39207888 DOI: 10.1021/jacs.4c08027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The indole moiety is ubiquitous in natural products and pharmaceuticals. C-H borylation of the benzenoid moiety of indoles is a challenging task, especially at the C5 position. We have combined computational and experimental studies to introduce multiple noncovalent interactions, especially dispersion, between the substrate and catalytic ligand to realize C5-borylation of indoles with high reactivity and selectivity. The successful computational predictions of new ligands should be suitable for ligand design in other transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Tianyu Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haochi Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Jiang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Recent advances in theoretical studies on transition-metal-catalyzed regioselective C-H functionalization of indoles. J Mol Model 2022; 28:267. [PMID: 35994132 DOI: 10.1007/s00894-022-05265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Indole compounds are widely found in natural products and drug candidates. The transition-metal-catalyzed regioselective C-H bond functionalization of indoles as the most efficient method for the synthesis of various functionalized indoles has been extensively studied in the past two decades due to its advantages of step economy and atom economy. In general, the catalysts included the transition-metals (Pd, Rh, Ru, Cu, Co, Fe, Zn, and Ga) and these reactions were accomplished with a remarkably wide range of coupling reagents for construction of various C-C and C-X (X = N, O, S) bonds. However, the general and important rules of the regioselectivity are not clear to date. Therefore, a comprehensive analysis through previous reported theoretical studies on transition-metal-catalyzed regioselective C-H bond functionalization of indoles was crucial and significant. In this review, we found that when the C-H bond activation process was the rate-determining step, the regioselectivity ordinarily occurred at the C7 or C4 positions (on benzene ring), and otherwise, the regioselectivity often occurred at C2 position (on pyrrole ring). For indoline substrates, the C-H bond functionalization occurred at the benzene ring. General rules of the regioselectivities for transition-metal-catalyzed C-H bond functionalization of indoles. This review collects major advances in the transition-metal-catalyzed C-H bond functionalization of indoles and indolines.
Collapse
|
3
|
Mahamudul Hassan MM, Mondal B, Singh S, Haldar C, Chaturvedi J, Bisht R, Sunoj RB, Chattopadhyay B. Ir-Catalyzed Ligand-Free Directed C–H Borylation of Arenes and Pharmaceuticals: Detailed Mechanistic Understanding. J Org Chem 2022; 87:4360-4375. [DOI: 10.1021/acs.joc.2c00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mirja Md Mahamudul Hassan
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sukriti Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chabush Haldar
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Jagriti Chaturvedi
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ranjana Bisht
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
4
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|