1
|
Kumar P, Tyagi VP, Ghosh M. Exploring the Multifarious Role of the Ligand in Electrocatalytic Hydrogen Evolution Reaction Pathways. Chemistry 2023; 29:e202302195. [PMID: 37728113 DOI: 10.1002/chem.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
In recent years, researchers have shifted their focus towards investigating the redox properties of ancillary ligand backbones for small-molecule activation. Several metal complexes have been reported for the electrocatalytic H2 evolution reaction (HER), providing valuable mechanistic insights. This process involves efficient coupling of electrons and protons. Redox-active ligands stipulate internal electron transfer and promote effective orbital overlap between metal and ligand, thereby, enabling efficient proton-coupled electron transfer reactions. Understanding such catalytic mechanisms requires thorough spectroscopic and computational analyses. Herein, we summarize recent examples of molecular electrocatalysts based on 3d transition metals that have significantly influenced mechanistic pathways, thus, emphasizing the multifaceted role of metal-ligand cooperativity.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Vyom Prakash Tyagi
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| |
Collapse
|
2
|
Papadakis M, Barrozo A, Delmotte L, Straistari T, Shova S, Réglier M, Krewald V, Bertaina S, Hardré R, Orio M. How Metal Nuclearity Impacts Electrocatalytic H2 Production in Thiocarbohydrazone-Based Complexes. INORGANICS 2023. [DOI: 10.3390/inorganics11040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Thiocarbohydrazone-based catalysts feature ligands that are potentially electrochemically active. From the synthesis point of view, these ligands can be easily tailored, opening multiple strategies for optimization, such as using different substituent groups or metal substitution. In this work, we show the possibility of a new strategy, involving the nuclearity of the system, meaning the number of metal centers. We report the synthesis and characterization of a trinuclear nickel-thiocarbohydrazone complex displaying an improved turnover rate compared with its mononuclear counterpart. We use DFT calculations to show that the mechanism involved is metal-centered, unlike the metal-assisted ligand-centered mechanism found in the mononuclear complex. Finally, we show that two possible mechanisms can be assigned to this catalyst, both involving an initial double reduction of the system.
Collapse
Affiliation(s)
- Michael Papadakis
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Alexandre Barrozo
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Léa Delmotte
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Tatiana Straistari
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Sergiu Shova
- Institute of Macromolecular Chemistry Petru Poni, 700487 Iasi, Romania
| | - Marius Réglier
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Sylvain Bertaina
- Aix-Marseille Univ, CNRS, IN2MP UMR 7334, 13397 Marseille, France
| | - Renaud Hardré
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Maylis Orio
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
3
|
Phipps CA, Hofsommer DT, Toda MJ, Nkurunziza F, Shah B, Spurgeon JM, Kozlowski PM, Buchanan RM, Grapperhaus CA. Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH. Inorg Chem 2022; 61:9792-9800. [PMID: 35687329 DOI: 10.1021/acs.inorgchem.2c01326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.
Collapse
Affiliation(s)
- Christine A Phipps
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Dillon T Hofsommer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francois Nkurunziza
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bhoomi Shah
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
4
|
González-García C, García-Pascual C, Burón R, Calatayud DG, Perles J, Antonia Mendiola M, López-Torres E. Structural variety, fluorescence and photocatalytic activity of dissymmetric thiosemicarbazone complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Barrozo A, Orio M. From Ligand- to Metal-centered Reactivity: Metal Substitution Effect in Thiosemicarbazone-based Complexes for H2 Production. Chemphyschem 2022; 23:e202200056. [PMID: 35213068 DOI: 10.1002/cphc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
The quest to develop and optimize catalysts for H 2 production requires a thorough understanding in the possible catalytic mechanisms involved. Transition metals are very often the centers of reactivity in the catalysis, although this can change in the presence of a redox-active ligand. Investigating the differences in catalysis when considering ligand- and metal-centered reactivity is important to find the most optimal mechanisms for hydrogen evolution reaction. Here, we investigated this change of reactivity in two versions of a thiosemicarbazone-based complex, using Co and Ni metal centers. While the Ni version has a ligand-centered reactivity, Co switches it toward a metal-centered one. Comparison between the mechanisms show differences in rate-limiting steps, and shows the importance of identifying those steps in order to optimize the system for hydrogen production.
Collapse
Affiliation(s)
- Alexandre Barrozo
- University of Southern California, Department of Chemistry, SSC 404, University of Southern California, 90089-0482, Los Angeles, UNITED STATES
| | - Maylis Orio
- iSm2: Institut des Sciences Moleculaires de Marseille, Biosciences, 52 Avenue Escadrille Normandie Niemen, 13013, Marseille, FRANCE
| |
Collapse
|
6
|
Ladomenou K, Papadakis M, Landrou G, Giorgi M, Drivas C, Kennou S, Hardré R, Massin J, Coutsolelos AG, Orio M. Nickel Complexes and Carbon Dots for Efficient Light‐Driven Hydrogen Production. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kalliopi Ladomenou
- Laboratory of Bioinorganic Chemistry Chemistry Department University of Crete PO Box 2208 71003 Heraklion Crete Greece
| | | | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry Chemistry Department University of Crete PO Box 2208 71003 Heraklion Crete Greece
| | - Michel Giorgi
- Aix Marseille Univ, CNRS, Spectropole FR1739 Marseille France
| | - Charalambos Drivas
- Surface Science Laboratory Chemical Engineering Department University of Patras 26504 Patras Greece
| | - Stella Kennou
- Surface Science Laboratory Chemical Engineering Department University of Patras 26504 Patras Greece
| | - Renaud Hardré
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Julien Massin
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Athanassios G. Coutsolelos
- Laboratory of Bioinorganic Chemistry Chemistry Department University of Crete PO Box 2208 71003 Heraklion Crete Greece
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
7
|
Tok GC, Reiter S, Freiberg ATS, Reinschlüssel L, Gasteiger HA, de Vivie-Riedle R, Hess CR. H 2 Evolution from Electrocatalysts with Redox-Active Ligands: Mechanistic Insights from Theory and Experiment vis-à-vis Co-Mabiq. Inorg Chem 2021; 60:13888-13902. [PMID: 34297556 DOI: 10.1021/acs.inorgchem.1c01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic hydrogen production via transition metal complexes offers a promising approach for chemical energy storage. Optimal platforms to effectively control the proton and electron transfer steps en route to H2 evolution still need to be established, and redox-active ligands could play an important role in this context. In this study, we explore the role of the redox-active Mabiq (Mabiq = 2-4:6-8-bis(3,3,4,4-tetramethlyldihydropyrrolo)-10-15-(2,2-biquinazolino)-[15]-1,3,5,8,10,14-hexaene1,3,7,9,11,14-N6) ligand in the hydrogen evolution reaction (HER). Using spectro-electrochemical studies in conjunction with quantum chemical calculations, we identified two precatalytic intermediates formed upon the addition of two electrons and one proton to [CoII(Mabiq)(THF)](PF6) (CoMbq). We further examined the acid strength effect on the generation of the intermediates. The generation of the first intermediate, CoMbq-H1, involves proton addition to the bridging imine-nitrogen atom of the ligand and requires strong proton activity. The second intermediate, CoMbq-H2, acquires a proton at the diketiminate carbon for which a weaker proton activity is sufficient. We propose two decoupled H2 evolution pathways based on these two intermediates, which operate at different overpotentials. Our results show how the various protonation sites of the redox-active Mabiq ligand affect the energies and activities of HER intermediates.
Collapse
Affiliation(s)
- G Ceren Tok
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Anna T S Freiberg
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Leonhard Reinschlüssel
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Hubert A Gasteiger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Corinna R Hess
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
8
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|