1
|
Balakrishnan T, Sagadevan S, Le MV, Soga T, Oh WC. Recent Progress on Functionalized Graphene Quantum Dots and Their Nanocomposites for Enhanced Gas Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:11. [PMID: 38202466 PMCID: PMC10780593 DOI: 10.3390/nano14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Gas-sensing technology has witnessed significant advancements that have been driven by the emergence of graphene quantum dots (GQDs) and their tailored nanocomposites. This comprehensive review surveys the recent progress made in the construction methods and applications of functionalized GQDs and GQD-based nanocomposites for gas sensing. The gas-sensing mechanisms, based on the Fermi-level control and charge carrier depletion layer theory, are briefly explained through the formation of heterojunctions and the adsorption/desorption principle. Furthermore, this review explores the enhancements achieved through the incorporation of GQDs into nanocomposites with diverse matrices, including polymers, metal oxides, and 2D materials. We also provide an overview of the key progress in various hazardous gas sensing applications using functionalized GQDs and GQD-based nanocomposites, focusing on key detection parameters such as sensitivity, selectivity, stability, response and recovery time, repeatability, and limit of detection (LOD). According to the most recent data, the normally reported values for the LOD of various toxic gases using GQD-based sensors are in the range of 1-10 ppm. Remarkably, some GQD-based sensors exhibit extremely low detection limits, such as N-GQDs/SnO2 (0.01 ppb for formaldehyde) and GQD@SnO2 (0.10 ppb for NO2). This review provides an up-to-date perspective on the evolving landscape of functionalized GQDs and their nanocomposites as pivotal components in the development of advanced gas sensors.
Collapse
Affiliation(s)
- Thivyah Balakrishnan
- Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Minh-Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Faculty of Chemical Engineering, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Tetsuo Soga
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan 356-706, Republic of Korea
| |
Collapse
|
2
|
Zhu X, Li Y, Cao P, Li P, Xing X, Yu Y, Guo R, Yang H. Recent Advances of Graphene Quantum Dots in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2880. [PMID: 37947725 PMCID: PMC10647816 DOI: 10.3390/nano13212880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Graphene quantum dots (GQDs), as 0D graphene nanomaterials, have aroused increasing interest in chemiresistive gas sensors owing to their remarkable physicochemical properties and tunable electronic structures. Research on GQDs has been booming over the past decades, and a number of excellent review articles have been provided on various other sensing principles of GQDs, such as fluorescence-based ion-sensing, bio-sensing, bio-imaging, and electrochemical, photoelectrochemical, and electrochemiluminescence sensing, and therapeutic, energy and catalysis applications. However, so far, there is no single review article on the application of GQDs in the field of chemiresistive gas sensing. This is our primary inspiration for writing this review, with a focus on the chemiresistive gas sensors reported using GQD-based composites. In this review, the various synthesized strategies of GQDs and its composites, gas sensing enhancement mechanisms, and the resulting sensing characteristics are presented. Finally, the current challenges and future prospects of GQDs in the abovementioned application filed have been discussed for the more rational design of advanced GQDs-based gas-sensing materials and innovative gas sensors with novel functionalities.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yongzhen Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Pei Cao
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Peng Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Xinzhu Xing
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yue Yu
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Ruihua Guo
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Hui Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
3
|
Song SW, Wang QM, Yu M, Tian ZY, Yang ZY. Enabling Quick Response to Nitrogen Dioxide at Room Temperature and Limit of Detection to Ppb Level by Heavily n-Doped Graphene Hybrid Transistor. Molecules 2023; 28:5054. [PMID: 37446716 DOI: 10.3390/molecules28135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Sensitive detection of nitrogen dioxide (NO2) is of significance in many areas for health and environmental protections. In this work, we developed an efficient NO2 sensor that can respond within seconds at room temperature, and the limit of detection (LOD) is as low as 100 ppb. Coating cyano-substituted poly(p-phenylene vinylene) (CN-PPV) films on graphene (G) layers can dope G sheets effectively to a heavy n state. The influences of solution concentrations and annealing temperatures on the n-doping effect were investigated in detail. The CN-PPV-G transistors fabricated with the optimized parameters demonstrate active sensing abilities toward NO2. The n-doping state of CN-PPV-G is reduced dramatically by NO2, which is a strong p-doping compound. Upon exposure to 25 ppm of NO2, our CN-PPV-G sensors react in 10 s, indicating it is almost an immediate response. LOD is determined as low as 100 ppb. The ultrahigh responding speed and low LOD are not affected in dry air. Furthermore, cycling use of our sensors can be realized through simple annealing. The superior features shown by our CN-PPV-G sensors are highly desired in the applications of monitoring the level of NO2 in situ and setting immediate alarms. Our results also suggest that transfer curves of transistors can react very promptly to the stimulus of target gas and, thus, are very promising in the development of fast-response sensing devices although the response values may not reach maximum as a tradeoff.
Collapse
Affiliation(s)
- Si-Wei Song
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Qian-Min Wang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao Yu
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Zhi-Yuan Tian
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Zhi-Yong Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
4
|
Ahmed J, Faisal M, Algethami JS, Alsaiari MA, Alsareii SA, Harraz FA. Low Overpotential Amperometric Sensor Using Yb 2O 3.CuO@rGO Nanocomposite for Sensitive Detection of Ascorbic Acid in Real Samples. BIOSENSORS 2023; 13:588. [PMID: 37366953 DOI: 10.3390/bios13060588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
The ultimate objective of this research work is to design a sensitive and selective electrochemical sensor for the efficient detection of ascorbic acid (AA), a vital antioxidant found in blood serum that may serve as a biomarker for oxidative stress. To achieve this, we utilized a novel Yb2O3.CuO@rGO nanocomposite (NC) as the active material to modify the glassy carbon working electrode (GCE). The structural properties and morphological characteristics of the Yb2O3.CuO@rGO NC were investigated using various techniques to ensure their suitability for the sensor. The resulting sensor electrode was able to detect a broad range of AA concentrations (0.5-1571 µM) in neutral phosphate buffer solution, with a high sensitivity of 0.4341 µAµM-1cm-2 and a reasonable detection limit of 0.062 µM. The sensor's great sensitivity and selectivity allowed it to accurately determine the levels of AA in human blood serum and commercial vitamin C tablets. It demonstrated high levels of reproducibility, repeatability, and stability, making it a reliable and robust sensor for the measurement of AA at low overpotential. Overall, the Yb2O3.CuO@rGO/GCE sensor showed great potential in detecting AA from real samples.
Collapse
Affiliation(s)
- Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Mohd Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Jari S Algethami
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Mabkhoot A Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| |
Collapse
|
5
|
Lee J, Park M, Song YG, Cho D, Lee K, Shim YS, Jeon S. Role of graphene quantum dots with discrete band gaps on SnO 2 nanodomes for NO 2 gas sensors with an ultralow detection limit. NANOSCALE ADVANCES 2023; 5:2767-2775. [PMID: 37205284 PMCID: PMC10186987 DOI: 10.1039/d2na00925k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023]
Abstract
NO2 is a major air pollutant that should be monitored due to its harmful effects on the environment and human health. Semiconducting metal oxide-based gas sensors have been widely explored owing to their superior sensitivity towards NO2, but their high operating temperature (>200 °C) and low selectivity still limit their practical use in sensor devices. In this study, we decorated graphene quantum dots (GQDs) with discrete band gaps onto tin oxide nanodomes (GQD@SnO2 nanodomes), enabling room temperature (RT) sensing towards 5 ppm NO2 gas with a noticeable response ((Ra/Rg) - 1 = 4.8), which cannot be matched using pristine SnO2 nanodomes. In addition, the GQD@SnO2 nanodome based gas sensor shows an extremely low detection limit of 1.1 ppb and high selectivity compared to other pollutant gases (H2S, CO, C7H8, NH3, and CH3COCH3). The oxygen functional groups in GQDs specifically enhance NO2 accessibility by increasing the adsorption energy. Strong electron transfer from SnO2 to GQDs widens the electron depletion layer at SnO2, thereby improving the gas response over a broad temperature range (RT-150 °C). This result provides a basic perspective for utilizing zero-dimensional GQDs in high-performance gas sensors operating over a wide range of temperatures.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Minsu Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University Evanston IL 60208 USA
| | - Young Geun Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST) Seoul 02791 Republic of Korea
| | - Donghwi Cho
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology Yuseong Daejeon 34114 Republic of Korea
| | - Kwangjae Lee
- Department of Information Security Engineering, Sangmyung University Cheonan 31066 Republic of Korea
| | - Young-Seok Shim
- School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Department of Materials Science and Engineering, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
6
|
Luhana C, Moyo I, Tshenkeng K, Mashazi P. In-sera selectivity detection of catecholamine neurotransmitters using covalent composite of cobalt phthalocyanine and aminated graphene quantum dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Debnath S, Haupa KA, Lebedkin S, Strelnikov D, Kappes MM. Triggering near-infrared luminescence of vanadyl phthalocyanine by charging. Angew Chem Int Ed Engl 2022; 61:e202201577. [PMID: 35349208 PMCID: PMC9322020 DOI: 10.1002/anie.202201577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/17/2022]
Abstract
Probing electrofluorochromism (EFC) at the molecular level remains challenging. Here we study the strongly charge state-dependent photoluminescence of vanadyl phthalocyanine. We report vibrationally resolved absorption and laser-induced fluorescence (LIF) spectra of samples comprising both the mass-selected neutral molecule (VOPc⋅, a stable radical) and its cation produced upon electron ionization (EI) isolated in 5 K neon matrices. Ionization of the essentially non-emissive VOPc⋅ forms a high-spin diradical cation (VOPc+.. ) which shows profound photoluminescence (PL) in the NIR range. This unique phenomenon is potentially of interest for NIR-emitting electro-optic devices.
Collapse
Affiliation(s)
- Sreekanta Debnath
- Institute of Physical Chemistry IIKarlsruhe Institute of TechnologyFritz-Haber-Weg 276131KarlsruheGermany
| | - Karolina A. Haupa
- Institute of Physical Chemistry IIKarlsruhe Institute of TechnologyFritz-Haber-Weg 276131KarlsruheGermany
| | - Sergei Lebedkin
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Dmitry Strelnikov
- Institute of Physical Chemistry IIKarlsruhe Institute of TechnologyFritz-Haber-Weg 276131KarlsruheGermany
| | - Manfred M. Kappes
- Institute of Physical Chemistry IIKarlsruhe Institute of TechnologyFritz-Haber-Weg 276131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
8
|
Resistive-Based Gas Sensors Using Quantum Dots: A Review. SENSORS 2022; 22:s22124369. [PMID: 35746151 PMCID: PMC9231087 DOI: 10.3390/s22124369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022]
Abstract
Quantum dots (QDs) are used progressively in sensing areas because of their special electrical properties due to their extremely small size. This paper discusses the gas sensing features of QD-based resistive sensors. Different types of pristine, doped, composite, and noble metal decorated QDs are discussed. In particular, the review focus primarily on the sensing mechanisms suggested for these gas sensors. QDs show a high sensing performance at generally low temperatures owing to their extremely small sizes, making them promising materials for the realization of reliable and high-output gas-sensing devices.
Collapse
|
9
|
Debnath S, Haupa KA, Lebedkin S, Strelnikov D, Kappes MM. Triggering near‐infrared luminescence of vanadyl phthalocyanine by charging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sreekanta Debnath
- Institute of Physical Chemistry II Karlsruhe Institute of Technology Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Karolina A. Haupa
- Institute of Physical Chemistry II Karlsruhe Institute of Technology Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dmitry Strelnikov
- Institute of Physical Chemistry II Karlsruhe Institute of Technology Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Manfred M. Kappes
- Institute of Physical Chemistry II Karlsruhe Institute of Technology Fritz-Haber-Weg 2 76131 Karlsruhe Germany
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
11
|
Koczorowski T, Cerbin-Koczorowska M, Rębiś T. Azaporphyrins Embedded on Carbon-Based Nanomaterials for Potential Use in Electrochemical Sensing-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2861. [PMID: 34835626 PMCID: PMC8620011 DOI: 10.3390/nano11112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
Phthalocyanines and porphyrazines as macrocyclic aza-analogues of well-known porphyrins were deposited on diverse carbon-based nanomaterials and investigated as sensing devices. The extended π-conjugated electron system of these macrocycles influences their ability to create stable hybrid systems with graphene or carbon nanotubes commonly based on π-π stacking interactions. During a 15-year period, the electrodes modified by deposition of these systems have been applied for the determination of diverse analytes, such as food pollutants, heavy metals, catecholamines, thiols, glucose, peroxides, some active pharmaceutical ingredients, and poisonous gases. These procedures have also taken place, on occasion, in the presence of various polymers, ionic liquids, and other moieties. In the review, studies are presented that were performed for sensing purposes, involving azaporphyrins embedded on graphene, graphene oxide or carbon nanotubes (both single and multi-walled ones). Moreover, possible methods of electrode fabrication, limits of detection of each analyte, as well as examples of macrocyclic compounds applied as sensing materials, are critically discussed.
Collapse
Affiliation(s)
- Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Magdalena Cerbin-Koczorowska
- Department of Medical Education, Poznan University of Medical Sciences, 7 Rokietnicka Str., 60-806 Poznan, Poland;
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
12
|
Jiang W, Jiang M, Wang T, Chen X, Zeng M, Yang J, Zhou Z, Hu N, Su Y, Yang Z. Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials. RSC Adv 2021; 11:14805-14813. [PMID: 35423981 PMCID: PMC8698068 DOI: 10.1039/d1ra01975a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, two kinds of cobalt phthalocyanine (CoPc) derivatives containing hexafluoroisopropanol (HFIP) and hexafluorbisphenol A (6FBPA) substituents have been obtained. Graphene quantum dots (GQDs) were anchored to CoPc derivatives by π-π bonding, forming hybrid materials. They were employed to detect dimethyl methylphosphonate (DMMP) gas, an ideal simulant gas for sarin nerve gas, and achieved good gas response performance at room temperature. There are strong hydrogen bonds between the two functional group molecules (HFIP and 6FBPA) and the DMMP molecule, leading to their excellent response performance to DMMP molecules. GQDs can effectively increase the electrical conductivity of hybrid materials by π-π bonding with CoPc derivatives. Therefore, the response speed of the hybrid materials to DMMP gas has been significantly improved, and the minimum detection limit is 500 ppb, while maintaining excellent repeatability, stability and selectivity. Laser-assisted irradiation was used to solve the problem of the slow recovery of CoPc derivatives. This result demonstrates that these CoPc derivative/GQD hybrid materials are expected to be the raw materials of the sarin gas sensor.
Collapse
Affiliation(s)
- Wenkai Jiang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Menglin Jiang
- Chinesisch-Deutsche Fakultät, Taizhou Vocational and Technical College Taizhou 318000 P. R. China
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xinwei Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhihua Zhou
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|