1
|
Balakrishnan J, Muthukumar P, Arputharaj DS, Christopher PVM, Karuppannan S, Kittusamy S. Theoretical investigations of the substituent effect on the opto-electronic properties of the linearly fused napthadithiophene-based molecules. J Comput Chem 2024; 45:915-929. [PMID: 38170163 DOI: 10.1002/jcc.27301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The optoelectronic and charge transport properties of eight linearly fused Napthadithiophene (NDT) molecules with different electron-withdrawing (EWG) and electron-donating (EDG) substituents are studied using the density functional theory (DFT) methods. The effect of the substitution of EWG and EDG on the molecular structure, frontier molecular orbitals, ionization energy, electron affinity, reorganization energy, crystal packing, and charge carrier mobility are studied. The crystal structure simulation method is used to optimize the possible crystal packing arrangements for the studied molecules. The energy and distribution of electron density on the frontier molecular orbitals are strongly influenced by the substitution of EWG and EDG, thereby changes in the absorption spectrum and charge transport properties. The unsubstituted NDT molecule possesses a maximum hole mobility of 2.8 cm2 V-1 s-1, which is due to the strong intermolecular interactions. Therefore, the NDT molecule can be used as a p-type semiconducting material. Among the studied molecules, the CCH-substituted NDT molecule, NDT-CCH, possesses a higher electron mobility of 1.13 cm2 V-1 s-1. The C2H5-substituted NDT molecule, NDT-C2H5, possesses ambipolar behavior with mobility of 4.77 × 10-2 cm2 V-1 s-1 and 1.70 × 10-2 cm2 V-1 s-1 for hole and electron, respectively.
Collapse
|
2
|
Insuasty D, Mutis M, Trilleras J, Illicachi LA, Rodríguez JD, Ramos-Hernández A, San-Juan-Vergara HG, Cadena-Cruz C, Mora JR, Paz JL, Méndez-López M, Pérez EG, Aliaga ME, Valencia J, Márquez E. Synthesis, Photophysical Properties, Theoretical Studies, and Living Cancer Cell Imaging Applications of New 7-(Diethylamino)quinolone Chalcones. ACS OMEGA 2024; 9:18786-18800. [PMID: 38708212 PMCID: PMC11064003 DOI: 10.1021/acsomega.3c07242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 05/07/2024]
Abstract
In this article, three unsymmetrical 7-(diethylamino)quinolone chalcones with D-π-A-D and D-π-A-π-D type push-pull molecular arrangements were synthesized via a Claisen-Schmidt reaction. Using 7-(diethylamino)quinolone and vanillin as electron donor (D) moieties, these were linked together through the α,β-unsaturated carbonyl system acting as a linker and an electron acceptor (A). The photophysical properties were studied, revealing significant Stokes shifts and strong solvatofluorochromism caused by the ICT and TICT behavior produced by the push-pull effect. Moreover, quenching caused by the population of the TICT state in THF-H2O mixtures was observed, and the emission in the solid state evidenced a red shift compared to the emission in solution. These findings were corroborated by density functional theory (DFT) calculations employing the wb97xd/6-311G(d,p) method. The cytotoxic activity of the synthesized compounds was assessed on BHK-21, PC3, and LNCaP cell lines, revealing moderate activity across all compounds. Notably, compound 5b exhibited the highest activity against LNCaP cells, with an LC50 value of 10.89 μM. Furthermore, the compounds were evaluated for their potential as imaging agents in living prostate cells. The results demonstrated their favorable cell permeability and strong emission at 488 nm, positioning them as promising candidates for cancer cell imaging applications.
Collapse
Affiliation(s)
- Daniel Insuasty
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Mario Mutis
- Grupo
de Investigación en Compuestos Heterocíclicos, Facultad
de Ciencias Básicas, Universidad
del Atlántico, Puerto Colombia 081007, Colombia
| | - Jorge Trilleras
- Grupo
de Investigación en Compuestos Heterocíclicos, Facultad
de Ciencias Básicas, Universidad
del Atlántico, Puerto Colombia 081007, Colombia
| | - Luis A. Illicachi
- Grupo
de Investigación en Química y Biotecnología,
Facultad de Ciencias Básicas, Universidad
Santiago de Cali, Calle 5. No. 62-00, Cali 760032, Colombia
| | - Juan D. Rodríguez
- Programa
de medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 7 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Andrea Ramos-Hernández
- Grupo
Química Supramolecular Aplicada, Semillero Electroquímica
Aplicada, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| | - Homero G. San-Juan-Vergara
- Departamento
de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Christian Cadena-Cruz
- Departamento
de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - José R. Mora
- Instituto
de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería
Química, Universidad San Francisco
de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Apartado, 15081 Lima, Perú
| | - Maximiliano Méndez-López
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Edwin G. Pérez
- Organic
Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Margarita E. Aliaga
- Physical
Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Jhesua Valencia
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Edgar Márquez
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| |
Collapse
|
3
|
Liu Y, Zhu S, Li W, Su Y, Zhou H, Chen R, Chen W, Zhang W, Niu X, Chen X, An Z. An optimal molecule-matching co-sensitization system for the improvement of photovoltaic performances of DSSCs. Phys Chem Chem Phys 2022; 24:22580-22588. [PMID: 36102796 DOI: 10.1039/d2cp02796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three biphenyl co-sensitizers (4OBA, 8OBA and 12OBA) with different terminal oxyalkyl chains were synthesized and co-sensitized respectively with the main dye (NP-1) in co-sensitized solar cells (co-DSSCs). The effects of the terminal oxyalkyl chains on the photophysical, electrochemical and photovoltaic properties of the co-DSSCs were systematically investigated. The optimal molecular matching relationship between the co-sensitizers and the main dye was obtained through density functional theory (DFT) calculations. Consequently, 4OBA has the most appropriate three-dimensional (3D) molecular structure, which could not only fill the gap between the large-size dyes but also plays a partial shielding role, inhibiting dye aggregation and electron recombination, therefore yielding the highest power conversion efficiency (PCE) for the co-DSSCs with NP-1@4OBA. This study suggests that adjusting the terminal oxyalkyl chains of the co-sensitizers can be used to enhance the intramolecular charge transfer efficiency and inhibit electron recombination, ultimately improving the photovoltaic performances of the co-DSSCs.
Collapse
Affiliation(s)
- Yongliang Liu
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Shengbo Zhu
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Wei Li
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Yilin Su
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Ran Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an 710119, P. R. China.,International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P. R. China.,Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Weixing Chen
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Wenzhi Zhang
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Xiaoling Niu
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an 710119, P. R. China.,International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P. R. China.,Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an 710119, P. R. China.,International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P. R. China.,Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|