1
|
Zabed HM, Akter S, Dar MA, Tuly JA, Kumar Aswathi M, Yun J, Li J, Qi X. Enhanced fermentable sugar production in lignocellulosic biorefinery by exploring a novel corn stover and configuring high-solid pretreatment conditions. BIORESOURCE TECHNOLOGY 2023; 386:129498. [PMID: 37463614 DOI: 10.1016/j.biortech.2023.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to produce enhanced fermentable sugars from a novel stover system through the bioprocessing of its soluble sugars and insoluble carbohydrates. The pretreatment conditions were optimized for this high sugar-containing stover (HSS) to control inhibitor formation and obtain enhanced fermentable sugar concentrations. The optimum temperature, acid loading, and reaction time for the pretreatment were 155 °C, 0.5%, and 30 min, respectively, providing up to 97.15% sugar yield and 76.51 g/L total sugars at 10% solid-load. Sugar concentration further increased to 126.9 g/L at 20% solid-load, generating 3.89 g/L acetate, 0.92 g/L 5-hydroxymethyl furfural, 0.82 g/L furfural, and 3.75 g/L total phenolics as inhibitors. To determine the effects of soluble sugars in HSS on fermentable sugar yield and inhibitor formation, sugar-removed HSS was further studied under the optimum conditions. Although prior removal of sugars exhibited a reduction in inhibitor generation, it also decreased total fermentable sugar production to 115.45 g/L.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mudasir A Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jamila A Tuly
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mukesh Kumar Aswathi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Junhua Yun
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Imman S, Khongchamnan P, Wanmolee W, Laosiripojana N, Kreetachat T, Sakulthaew C, Chokejaroenrat C, Suriyachai N. Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process. RSC Adv 2021; 11:26773-26784. [PMID: 35480031 PMCID: PMC9037613 DOI: 10.1039/d1ra03237b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022] Open
Abstract
Conversion of lignocellulosic residue to bioenergy and biofuel is a promising platform for global sustainability. Fractionation is an initial step for isolating lignocellulosic components for subsequent valorization. The aim of this research is to develop the solvothermal fractionation of sugarcane bagasse to produce high purity lignin. The physio-chemical structure of isolated lignin from this process was determined. In this study, a central composite design-based response surface methodology (RSM) was used to optimize an acid promoter for isolating lignin from sugarcane bagasse using a solvothermal fractionation process. The reaction was carried out with sulfuric acid, at a concentration of 0.01-0.02 M and a reaction temperature of 180-200 °C for 30-90 min. The optimal conditions for the experiment were obtained at the acid concentration of 0.02 M with a temperature of 200 °C for 90 min in methyl isobutyl ketone (MIBK)/methanol/water (35% : 25% : 40% v/v%). The results showed that 88% of lignin removal was done in the solid phase, while 87% of lignin recovery was conducted in the organic phase. Furthermore, the changes in the physico-chemical characteristics of solid residue and lignin recovery were analyzed using various techniques. GPC analysis of recovered lignin from the organic fraction showed a lower M w (1374 g mol-1) and polydispersity index (1.75) compared to commercial organosolv lignin. The major lignin degradation temperature of commercial organosolv lignin was estimated to be 410 °C, whereas BGL showed two main degradations at 291 °C and 437 °C, which could point to potential relationships with the degradation of β-O-4 cross-links. The results indicated that recovered lignin was mostly cross-linked by β-O-4 cross-links. In addition, Py-GC/MS and 2D HSQC NMR gave more information regarding the compositional and structural features of recovered lignin. The development of the sulfuric acid catalyzed solvothermal process in this study provides efficient extraction of high-value organosolv lignin from sugarcane bagasse and the production of recovered lignin in the organic phase with low contamination from other contents. The lignin characteristic data can contribute to the development of lignin valorization in value-added applications.
Collapse
Affiliation(s)
- Saksit Imman
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| | - Punjarat Khongchamnan
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi Prachauthit Road, Bangmod Bangkok 10140 Thailand
| | - Torpong Kreetachat
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| | - Chainarong Sakulthaew
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University Bangkok Thailand
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University Bangkok Thailand
| | - Nopparat Suriyachai
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| |
Collapse
|