1
|
Solak K, Atiş M, Kasapoğlu AE, Karaman A, Mavi A. Metal Nanoparticles for Simultaneous Use in AC Magnetic Field Hyperthermia and Magnetic Resonance Imaging. J Biomed Mater Res A 2025; 113:e37817. [PMID: 39474677 DOI: 10.1002/jbm.a.37817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 12/26/2024]
Abstract
Magnetic nanoparticles (MNPs) are produced for both diagnosis and treatment due to their simultaneous availability in magnetic resonance imaging (MRI) and magnetic hyperthermia (MHT). Extensive investigations focus on developing MNPs for individual MHT or MRI applications, but the development of MNPs for theragnostic applications has received very little attention. In this study, through efficient examination of synthesis conditions such as metal precursors, reaction parameters, and solvent choices, we aimed to optimize MNP production for effective utilization for MHT and MRI simultaneously. MNPs were synthesized by thermal decomposition under 17 different conditions and deeply characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The heating efficiency of MNPs under an alternating current (AC) magnetic field was quantified, while MRI performance was evaluated through agar phantom experiments. Our findings highlight the crucial role of benzyl ether in metal ion reduction and size control. Metal-doped iron oxide MNPs displayed promise for MHT, whereas Mn-doped iron oxide MNPs exhibited enhanced MRI capabilities. Consequently, five engineered MNPs were considered potential candidates for further studies, demonstrating their dual ability in MRI and MHT.
Collapse
Affiliation(s)
- Kübra Solak
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Türkiye
| | - Mustafa Atiş
- School of Medicine, Atatürk University, Erzurum, Türkiye
- School of Medicine, Ağrı İbrahim Çeçen University, Ağrı, Türkiye
| | - Ahmet Emre Kasapoğlu
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Türkiye
| | - Adem Karaman
- Faculty of Medicine, Department of Radiology, Atatürk University, Erzurum, Türkiye
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Türkiye
- Department of Mathematics and Science Education, Kâzım Karabekir Faculty of Education, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
2
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
4
|
Besenhard MO, Pal S, Gkogkos G, Gavriilidis A. Non-fouling flow reactors for nanomaterial synthesis. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review provides a holistic description of flow reactor fouling for wet-chemical nanomaterial syntheses. Fouling origins and consequences are discussed together with the variety of flow reactors for its prevention.
Collapse
Affiliation(s)
| | - Sayan Pal
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
5
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
6
|
Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022; 19:321-335. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the field of drug delivery, controlling the release of therapeutic substances at localized targets has become a primary focus of medical research, especially in the field of cancer treatment. Magnetic nanoparticles are one of the most promising drug carriers thanks to their biocompatibility and (super)paramagnetic properties. These properties allow for the combination between imaging modalities and specific release of drugs at target sites using either local stimulus (i.e. pH, conjugation of biomarkers, …) or external stimulus (i.e. external magnetic field). AREAS COVERED This review provides an update on recent advances with the development of targeted drug delivery systems based on magnetic nanoparticles (MNPs). This overview focuses on active targeting strategies and systems combining both imaging and therapeutic modalities (i.e. theranostics). If most of the examples concern the particular case of cancer therapy, the possibility of using MNPs for other medical applications is also discussed. EXPERT OPINION The development of clinically relevant drug delivery systems based on magnetic nanoparticles is driven by advantages stemming from their remarkable properties (i.e. easy preparation, facile chemical functionalization, biocompatibility, low toxicity and superior magnetic responsiveness). This literature review shows that drug carriers based on magnetic nanoparticles can be efficiently used for the controlled release of drug at targeted locations mediated by various stimuli. Advances in the field should lead to the implementation of such systems into clinical trials, especially systems enabling drug tracking in the body.
Collapse
Affiliation(s)
- D Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - T Vangijzegem
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - I Ternad
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - S Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| |
Collapse
|
7
|
Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers (Basel) 2022; 14:polym14040752. [PMID: 35215665 PMCID: PMC8878751 DOI: 10.3390/polym14040752] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.
Collapse
|
8
|
Fahmi MZ, Machmudah N, Indrawasih P, Wibrianto A, Ahmad MA, Sakti SCW, Chang JY. Naproxen release from carbon dot coated magnetite nanohybrid as versatile theranostics for HeLa cancer cells. RSC Adv 2022; 12:32328-32337. [PMID: 36425684 PMCID: PMC9650478 DOI: 10.1039/d2ra05673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging. The nanohybrid was prepared via pyrolysis and further loaded with naproxen (NAP) to promote drug delivery features. The characterization of the synthesized Fe3O4@CDs demonstrated the existence of Fe3O4 crystals by matching with JCPDS 75-0033 and its narrow size distribution at 11.30 nm; further, FTIR spectra confirmed the presence of Fe–O groups, C–O stretching, C–H sp2, and C–O bending, along with dual-active fluorescence and magnetic responses. The nanohybrids also exhibit particular properties such as a maximum wavelength of 230.5 nm, maximum emission in the 320–420 nm range, and slight superparamagnetic reduction (Fe3O4: 0.93620 emu per g; Fe3O4@CDs: 0.64784 emu per g). The cytotoxicity assessment of the nanohybrid revealed an excellent half-maximal inhibitory concentration (IC50) of 17 671.5 ± 1742.6 μg mL−1. Then, the incorporation of NAP decreased the cell viability to below 10%. The kinetic release properties of NAP are also confirmed as pH-dependent, and they follow the Korsmeyer–Peppas kinetics model. These results indicated that the proposed Fe3O4@CDs can be used as a new model for theranostic treatment. Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging.![]()
Collapse
Affiliation(s)
- Mochamad Z. Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Putri Indrawasih
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Musbahu A. Ahmad
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Satya C. W. Sakti
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| |
Collapse
|
9
|
High Temperature Continuous Flow Syntheses of Iron Oxide Nanoflowers Using the Polyol Route in a Multi-Parametric Millifluidic Device. NANOMATERIALS 2021; 12:nano12010119. [PMID: 35010070 PMCID: PMC8746638 DOI: 10.3390/nano12010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
One of the most versatile routes for the elaboration of nanomaterials in materials science, including the synthesis of magnetic iron oxide nanoclusters, is the high-temperature polyol process. However, despite its versatility, this process still lacks reproducibility and scale-up, in addition to the low yield obtained in final materials. In this work, we demonstrate a home-made multiparametric continuous flow millifluidic system that can operate at high temperatures (up to 400 °C). After optimization, we validate its potential for the production of nanomaterials using the polyol route at 220 °C by elaborating ferrite iron oxide nanoclusters called nanoflowers (CoFe2O4, Fe3O4, MnFe2O4) with well-controlled nanostructure and composition, which are highly demanded due to their physical properties. Moreover, we demonstrate that by using such a continuous process, the chemical yield and reproducibility of the nanoflower synthesis are strongly improved as well as the possibility to produce these nanomaterials on a large scale with quantities up to 45 g per day.
Collapse
|
10
|
Storozhuk L, Besenhard MO, Mourdikoudis S, LaGrow AP, Lees MR, Tung LD, Gavriilidis A, Thanh NTK. Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45870-45880. [PMID: 34541850 DOI: 10.1021/acsami.1c12323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetically induced hyperthermia has reached a milestone in medical nanoscience and in phase III clinical trials for cancer treatment. As it relies on the heat generated by magnetic nanoparticles (NPs) when exposed to an external alternating magnetic field, the heating ability of these NPs is of paramount importance, so is their synthesis. We present a simple and fast method to produce iron oxide nanostructures with excellent heating ability that are colloidally stable in water. A polyol process yielded biocompatible single core nanoparticles and nanoflowers. The effect of parameters such as the precursor concentration, polyol molecular weight as well as reaction time was studied, aiming to produce NPs with the highest possible heating rates. Polyacrylic acid facilitated the formation of excellent nanoheating agents iron oxide nanoflowers (IONFs) within 30 min. The progressive increase of the size of the NFs through applying a seeded growth approach resulted in outstanding enhancement of their heating efficiency with intrinsic loss parameter up to 8.49 nH m2 kgFe-1. The colloidal stability of the NFs was maintained when transferring to an aqueous solution via a simple ligand exchange protocol, replacing polyol ligands with biocompatible sodium tripolyphosphate to secure the IONPs long-term colloidal stabilization.
Collapse
Affiliation(s)
- Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| | - Maximilian O Besenhard
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Martin R Lees
- Superconductivity and Magnetism Group, Physics Department, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| |
Collapse
|
11
|
Besenhard MO, Jiang D, Pankhurst QA, Southern P, Damilos S, Storozhuk L, Demosthenous A, Thanh NTK, Dobson P, Gavriilidis A. Development of an in-line magnetometer for flow chemistry and its demonstration for magnetic nanoparticle synthesis. LAB ON A CHIP 2021; 21:3775-3783. [PMID: 34581389 DOI: 10.1039/d1lc00425e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the wide usage of magnetic nanoparticles, it remains challenging to synthesise particles with properties that exploit each application's full potential. Time consuming experimental procedures and particle analysis hinder process development, which is commonly constrained to a handful of experiments without considering particle formation kinetics, reproducibility and scalability. Flow reactors are known for their potential of large-scale production and high-throughput screening of process parameters. These advantages, however, have not been utilised for magnetic nanoparticle synthesis where particle characterisation is performed, with a few exceptions, post-synthesis. To overcome this bottleneck, we developed a highly sensitive magnetometer for flow reactors to characterise magnetic nanoparticles in solution in-line and in real-time using alternating current susceptometry. This flow magnetometer enriches the flow-chemistry toolbox by facilitating continuous quality control and high-throughput screening of magnetic nanoparticle syntheses. The sensitivity required to monitor magnetic nanoparticle syntheses at the typically low concentrations (<100 mM of Fe) was achieved by comparing the signals induced in the sample and reference cell, each of which contained near-identical pairs of induction and pick-up coils. The reference cell was filled only with air, whereas the sample cell was a flow cell allowing sample solution to pass through. Balancing the flow and reference cell impedance with a newly developed electronic circuit was pivotal for the magnetometer's sensitivity. To showcase its potential, the flow magnetometer was used to monitor two iron oxide nanoparticle syntheses with well-known particle formation kinetics, i.e., co-precipitation syntheses with sodium carbonate and sodium hydroxide as base, which have been previously studied via synchrotron X-ray diffraction. The flow magnetometer facilitated batch (on-line) and flow (in-line) synthesis monitoring, providing new insights into the particle formation kinetics as well as, effect of temperature and pH. The compact lab-scale flow device presented here, opens up new possibilities for magnetic nanoparticle synthesis and manufacturing, including 1) early stage reaction characterisation 2) process monitoring and control and 3) high-throughput screening in combination with flow reactors.
Collapse
Affiliation(s)
- Maximilian O Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Quentin A Pankhurst
- UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Paul Southern
- UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Spyridon Damilos
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Liudmyla Storozhuk
- UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Nguyen T K Thanh
- UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London W1S 4BS, UK
- UCL Nanomaterials Laboratory, University College London, 21 Albemarle Street, London W1S 4BS, UK
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter Dobson
- The Queen's College, University of Oxford, Oxford OX1 4AW, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
12
|
Zhu H, Wu KJ, He CH. Continuous Synthesis of Uniformly Dispersed Mesoporous SBA-15 Supported Silver Nanoparticles in a Coiled Flow Inverter Reactor. Front Chem 2021; 9:747105. [PMID: 34631668 PMCID: PMC8492998 DOI: 10.3389/fchem.2021.747105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mesoporous silica supported nanocatalysts have shown great potential in industrial processes due to their unique properties, such as high surface area, large pore volume, good chemomechanical stability and so on. Controllable and tunable synthesis of supported nanocatalysts is a crucial problem. Continuous synthesis of supported nanoparticles has been reported to get uniformly dispersed nanomaterials. Here, a method for continuous synthesis of uniformly dispersed mesoporous SBA-15 supported silver nanoparticles in a coiled flow inverter (CFI) microreactor is described. Compared to Ag/SBA-15 synthesized in the conventional batch reactor and Ag synthesized in continuous flow, mesoporous silica nanocatalysts synthesized in continuous flow are found to have smaller average size (7-11 nm) and narrower size distribution. The addition of capping agents can effectively change the characteristic of catalysts. Moreover, two kinds of support with different surface area and pore size have been added into the continuous synthesis. This method can provide further understandings for the synthesis of uniformly dispersed supported nanocatalysts in continuous flow, especially for mesoporous nanomaterials, which provides the possibilities of large-scale yield process of supported nanocatalysts in industry.
Collapse
Affiliation(s)
- Hai Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Ke-Jun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, Quzhou, China
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Chao-Hong He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, Quzhou, China
| |
Collapse
|
13
|
Ovejero JG, Gallo-Cordova A, Roca AG, Morales MP, Veintemillas-Verdaguer S. Reproducibility and Scalability of Magnetic Nanoheater Synthesis. NANOMATERIALS 2021; 11:nano11082059. [PMID: 34443890 PMCID: PMC8402135 DOI: 10.3390/nano11082059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023]
Abstract
The application of magnetic nanoparticles requires large amounts of materials of reproducible quality. This work explores the scaled-up synthesis of multi-core iron oxide nanoparticles through the use of thermal decomposition in organic media and kilograms of reagents. To this end, we check the effect of extending the high temperature step from minutes to hours. To address the intrinsic variability of the colloidal crystallization nucleation process, the experiments were repeated and analyzed statistically. Due to the simultaneity of the nuclei growth and agglomeration steps, the nanostructure of the samples produced was a combination of single- and multi-core nanoparticles. The main characteristics of the materials obtained, as well as the reaction yields, were analyzed and compared. As a general rule, yield, particle size, and reproducibility increase when the time at high temperature is prolonged. The samples obtained were ranked in terms of the reproducibility of different structural, colloidal, and magnetic features. The capability of the obtained materials to act as nanoheaters in magnetic hyperthermia was assessed, showing a strong dependence on the crystallite size (calculated by X-ray diffraction), reflecting the nanoparticle volume with a coherent magnetization reversal.
Collapse
|
14
|
Besenhard MO, Panariello L, Kiefer C, LaGrow AP, Storozhuk L, Perton F, Begin S, Mertz D, Thanh NTK, Gavriilidis A. Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor. NANOSCALE 2021; 13:8795-8805. [PMID: 34014243 DOI: 10.1039/d1nr00877c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Small iron oxide nanoparticles (IONPs) were synthesised in water via co-precipitation by quenching particle growth after the desired magnetic iron oxide phase formed. This was achieved in a millifluidic multistage flow reactor by precisely timed addition of an acidic solution. IONPs (≤5 nm), a suitable size for positive T1 magnetic resonance imaging (MRI) contrast agents, were obtained and stabilised continuously. This novel flow chemistry approach facilitates a reproducible and scalable production, which is a crucial paradigm shift to utilise IONPs as contrast agents and replace currently used Gd complexes. Acid addition had to be timed carefully, as the inverse spinel structure formed within seconds after initiating the co-precipitation. Late quenching allowed IONPs to grow larger than 5 nm, whereas premature acid addition yielded undesired oxide phases. Use of a flow reactor was not only essential for scalability, but also to synthesise monodisperse and non-agglomerated small IONPs as (i) co-precipitation and acid addition occurred at homogenous environment due to accurate temperature control and rapid mixing and (ii) quenching of particle growth was possible at the optimum time, i.e., a few seconds after initiating co-precipitation. In addition to the timing of growth quenching, the effect of temperature and dextran present during co-precipitation on the final particle size was investigated. This approach differs from small IONP syntheses in batch utilising either growth inhibitors (which likely leads to impurities) or high temperature methods in organic solvents. Furthermore, this continuous synthesis enables the low-cost (<£10 per g) and large-scale production of highly stable small IONPs without the use of toxic reagents. The flow-synthesised small IONPs showed high T1 contrast enhancement, with transversal relaxivity (r2) reduced to 20.5 mM-1 s-1 and longitudinal relaxivity (r1) higher than 10 mM-1 s-1, which is among the highest values reported for water-based IONP synthesis.
Collapse
Affiliation(s)
| | - Luca Panariello
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Céline Kiefer
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Liudmyla Storozhuk
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Francis Perton
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Sylvie Begin
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Nguyen Thi Kim Thanh
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK. and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
15
|
Abstract
AbstractIn capillary reactors, improving radial mixing and narrowing the residence time distribution is of great importance for high selectivity and reaction performance. A well-known approach is inducing secondary flow patterns by coiling the capillary around a cylinder. To increase understanding of transport phenomena in helically coiled capillaries non-invasive 3D imaging approaches are required. In this perspective paper, we introduce X-ray-based micro-computed tomography for the investigation of dispersion of iodide in a helically coiled tube. The methodology presented here allows for the direct evaluation of radial concentration fields. By varying Dean number $$Dn$$
D
n
and modified torsion parameter $${T}^{*}$$
T
∗
, the effect of torsion and curvature on the radial concentration profile can be identified. Detailed knowledge of local radial mixing in helically coiled capillaries will help the precise prediction of reaction progress and selectivity.
Graphical abstract
Collapse
|
16
|
Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Morales MDP, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. MATERIALS (BASEL, SWITZERLAND) 2021; 14:706. [PMID: 33546176 PMCID: PMC7913249 DOI: 10.3390/ma14040706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.
Collapse
Affiliation(s)
| | | | - Simo Spassov
- Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium;
| | - Etelka Tombácz
- Soós Water Technology Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Christer Johansson
- RISE Research Institutes of Sweden, Sensors and Materials, Arvid Hedvalls Backe 4, 411 33 Göteborg, Sweden;
| | - Patricia De La Presa
- Instituto de Magnetismo Aplicado UCM-ADIF-CSIC, A6 22,500 km, 29260 Las Rozas, Spain;
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, 28048 Madrid, Spain
| | - Francisco J. Teran
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Nanotech Solutions, Ctra Madrid, 23, 40150 Villacastín, Spain
| | - María del Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Sabino Veintemillas-Verdaguer
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Nguyen T. K. Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK;
- Biophysics Group, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Maximilian O. Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Quentin Harmer
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Eric Mayes
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Bella B. Manshian
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Stefaan J. Soenen
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Yuanyu Gu
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Ángel Millán
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Eleni K. Efthimiadou
- Chemistry Department, Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Jeff Gaudet
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Patrick Goodwill
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - James Mansfield
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Uwe Steinhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - James Wells
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Daniel Ortega
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11002 Cádiz, Spain
- Condensed Matter Physics Department, Faculty of Sciences, Campus Universitario de Puerto Real s/n, 11510 Puerto Real, Spain
| |
Collapse
|
17
|
Mahin J, Franck CO, Fanslau L, Patra HK, Mantle MD, Fruk L, Torrente-Murciano L. Green, scalable, low cost and reproducible flow synthesis of biocompatible PEG-functionalized iron oxide nanoparticles. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00239b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A continuous synthesis strategy enabling the large-scale and cost-effective synthesis and functionalization of iron oxide nanoparticles in a single setup is developed, leading to fully biocompatible and application-ready PEG coated nanoparticles.
Collapse
Affiliation(s)
- Julien Mahin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Christoph O. Franck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Luise Fanslau
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Hirak K. Patra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Michael D. Mantle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Laura Torrente-Murciano
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
18
|
James M, Revia RA, Stephen Z, Zhang M. Microfluidic Synthesis of Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2113. [PMID: 33114204 PMCID: PMC7690813 DOI: 10.3390/nano10112113] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Research efforts into the production and application of iron oxide nanoparticles (IONPs) in recent decades have shown IONPs to be promising for a range of biomedical applications. Many synthesis techniques have been developed to produce high-quality IONPs that are safe for in vivo environments while also being able to perform useful biological functions. Among them, coprecipitation is the most commonly used method but has several limitations such as polydisperse IONPs, long synthesis times, and batch-to-batch variations. Recent efforts at addressing these limitations have led to the development of microfluidic devices that can make IONPs of much-improved quality. Here, we review recent advances in the development of microfluidic devices for the synthesis of IONPs by coprecipitation. We discuss the main architectures used in microfluidic device design and highlight the most prominent manufacturing methods and materials used to construct these microfluidic devices. Finally, we discuss the benefits that microfluidics can offer to the coprecipitation synthesis process including the ability to better control various synthesis parameters and produce IONPs with high production rates.
Collapse
Affiliation(s)
- Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
| | - Zachary Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|