1
|
Chang ZX, Hong CY, Zhang WJ. Polymerization-Induced Self-Assembly Providing PEG-Gels with Dynamic Micelle-Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances. Macromol Rapid Commun 2024:e2400681. [PMID: 39427340 DOI: 10.1002/marc.202400681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self-healing performances in one gel is more difficult. Herein, polymerization-induced self-assembly (PISA) providing PEG-gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG-gels with dynamic micelle-crosslinked hierarchical structures. Compared to hydrogels, PEG-gels show excellent long-term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG-gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous-gels (without nanofillers). The energy dissipation mechanism of the PEG-gels is analyzed via stress relaxation and cyclic mechanical tests. High-density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self-healing properties of the dynamic micelle-crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.
Collapse
Affiliation(s)
- Zi-Xuan Chang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chun-Yan Hong
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wen-Jian Zhang
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
2
|
Tian X, Xu H, Qiu T, Wu F, Li X, Guo L. The Valence-Dependent Activity of Colloidal Molecules as Ice Recrystallization Inhibitors. ACS Macro Lett 2024; 13:935-942. [PMID: 39007898 DOI: 10.1021/acsmacrolett.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inspired by advances in cryopreservation techniques, which are essential for modern biomedical applications, there is a special interest in the ice recrystallization inhibition (IRI) of the antifreeze protein (AFPs) mimics. There are in-depth studies on synthetic materials mimicking AFPs, from simple molecular structure levels to complex self-assemblies. Herein, we report the valence-dependent IRI activity of colloidal organic molecules (CMs). The CMs were prepared through polymerization-induced particle-assembly (PIPA) of the ABC-type triblock terpolymer of poly(acryloxyethyl trimethylammonium chloride)-b-poly(benzyl acrylate)-b-poly(diacetone acrylamide) (PATAC-b-PBzA-b-PDAAM) at high monomer conversions. Stabilized by the cationic block of PATAC, the strong intermolecular H-bonding and incompatibility of the PDAAM block with PBzA contributed to the in situ formation of Janus particles (AX1) beyond the initial spherical seed particles (AX0), as well as the high valency clusters of linear AX2 and trigonal AX3. Their distribution was controlled mainly by the polymerization degrees (DPs) of PATAC and PDAAM blocks. IRI activity results of the CMs suggest that the higher fraction of AX1 results in the better IRI activity. Increasing the fraction of AX1 from 27% to 65% led to a decrease of the mean grain size from 39.8% to 10.9% and a depressed growth rate of ice crystals by 58%. Moreover, by replacing the PDAAM block with the temperature-responsive one of poly(N-isopropylacrylamide) (PNIPAM), temperature-adjustable IRI activity was observed, which is well related to the reversible transition of AX0 to AX1, providing a new idea for the molecular design of amphiphilic polymer nanoparticle-based IRI activity materials.
Collapse
Affiliation(s)
- Xiaoqian Tian
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huangbing Xu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, PR China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Teng Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, PR China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fengjiao Wu
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaoyu Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, PR China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Longhai Guo
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, PR China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Li D, Shao X, Li X, Qian Y, Wang G, Wei Y, Guo S. Versatile morphology transition of nano-assemblies via ultrasonics/microwave assisted aqueous polymerization-induced self-assembly based on host-guest interaction. ULTRASONICS SONOCHEMISTRY 2024; 107:106901. [PMID: 38735786 PMCID: PMC11179237 DOI: 10.1016/j.ultsonch.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Nano-assemblies have wide applications in biomedicine, functional coatings, Pickering emulsifiers, hydrogels, and so forth. The preparation of assemblies mainly utilizes the polymerization-induced self-assembly (PISA) method, which can produce high-concentration nanoscale assemblies in one step. However, the initiation processes of most reported PISA are limited to thermal initiation. Here, we reported two green and efficient methods for synthesizing nano-assemblies with various morphologies using ultrasound (20 kHz)/ microwave (500 W) assisted aqueous-phase RAFT-PISA in 3 h and 1 h. Cyclodextrin (CD) and styrene (St) nucleating monomer were complexed in a 1:1 ratio. Then, using Poly (ethylene glycol) methyl ether as the macromolecular reversible addition-fragmentation chain transfer (RAFT) agent (PEG-CTA) to control the CD/St complexes, the conversion rate of St monomer was respectively 27 %-60 %, 20 %-30 % within 3 h and 1 h under ultrasonics/microwave assisted PISA. Results showed that the morphologies of the assemblies are not only related to the length of PS block, but also to the assistance types and the remaining monomer concentration. The results showed that only PEG45-b-PS90 and PEG45-b-PS241 assemblies prepared by ultrasonics assisted PISA form evolved lamellaes and vesicles (100 nm), which break through the limitation of kinetic freezing. But the ultrasonic reaction on morphology of assemblies is not all favourable. For one thing, it can promote the movement of particles; for another, it makes reverse morphology transformation and sphere is preferred morphology. Therefore, the main reason of morphology evolution is the remaining monomer concentration of PEG45-b-PS90 and PEG45-b-PS241 assemblies reaches to 55 %-65 %, which promoting the segment movement. The results showed that the morphology of the assemblies prepared by microwave assisted PISA changed from spherical micelles to short rods, and finally to vesicles (120-140 nm) as the length of hydrophobic PS block increases. The kinetic freezing problem was solved in microwave-assisted PISA due to the action of microwaves and more remaining monomer concentration. Both them can boost particles movement.
Collapse
Affiliation(s)
- Dan Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Xin Shao
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Xin Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Yongqiang Qian
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Guxia Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Yen Wei
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China; Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
4
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
5
|
Shao X, Li D, Guo S, Yan J, Qian Y, Wang G. Preparation of diblock copolymer nano-assemblies by ultrasonics assisted ethanol-phase polymerization-induced self-assembly. ULTRASONICS SONOCHEMISTRY 2024; 105:106855. [PMID: 38531733 PMCID: PMC11059131 DOI: 10.1016/j.ultsonch.2024.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Assemblies are widely used in biomedicine, batteries, functional coatings, Pickering emulsifiers, hydrogels, and luminescent materials. Polymerization-induced self-assembly (PISA) is a method for efficiently preparing particles, mainly initiated thermally. However, thermally initiated PISA usually requires a significant amount of time and energy. Here, we demonstrate the preparation of nano-assemblies with controllable morphologies and size using ultrasound (20 kHz) assisted ethanol-phase RAFT-PISA in three hours. Using poly (N, N-dimethylaminoethyl methacrylate) as the macromolecular reversible addition-fragmentation chain transfer agent (PDMA-CTA) to control the nucleating monomer benzyl methacrylate (BzMA), we obtained nano-assemblies with different morphologies. With the length of hydrophobic PBzMA block growth, the morphologies of the assemblies at 15 wt% solid content changed from spheres to vesicles, and finally to lamellae; the morphologies of the assemblies at 30 wt% changed from spheres micelles to short worms, then vesicles, and finally to large compound vesicles. With the same targeted degree of polymerization, nano-assemblies having a 30 wt% solid content display a more evolved morphology. The input of ultrasonic energy makes the system have higher surface free energy, results the mass fraction interval of solventphilic blocks (fhydrophilic) corresponding to the formation of spherical micelles is expanded from fhydrophilic > 45 % to fhydrophilic > 31 % under ultrasound and the fhydrophilic required to form worms, vesicles, and large composite vesicles decreases in turn. It is worth noting that the fhydrophilic interval of worms prepared by ultrasonics assisted PISA gets larger. Overall, the highly green, externally-regulatable and fast method of ultrasonics assisted PISA can be extended to vastly different diblock copolymers, for a wide range of applications.
Collapse
Affiliation(s)
- Xin Shao
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Dan Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Yongqiang Qian
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Guxia Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
6
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
7
|
Sun H, Leng Y, Zhou X, Li X, Wang T. Regulation of the nanostructures self-assembled from an amphiphilic azobenzene homopolymer: influence of initial concentration and solvent solubility parameter. SOFT MATTER 2023; 19:743-748. [PMID: 36621933 DOI: 10.1039/d2sm01059c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The control over the morphology and nanostructure of soft nanomaterials self-assembled from amphiphilic polymers is of high interest, but is still challenging. Herein, we manipulate the morphology of bowl-shaped nanoparticles by changing initial polymer concentrations, and prepare nanotubes and nanowires, both twisted and not, by using solvents with different solubility parameters. An amphiphilic azobenzene homopolymer (poly(4-(phenyldiazenyl)phenyl methacrylamide), PAzoMAA) is designed and synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, which can self-assemble into bowl-shaped nanoparticles promoted by the synergy of hydrogen bonding and π-π interaction. More significantly, the opening size of the bowl-shaped nanoparticles can be controlled by changing initial polymer concentrations. Nanotubes and nanowires, both twisted and not, are also obtained using a solvothermal method in alcohols. The relationship between the structure of the nanomaterials and the solubility parameters of the alcohols is investigated, revealing the molecular arrangement patterns of PAzoMAA in different nanostructures. Overall, we propose a facile strategy to manipulate the microstructure of bowl-shaped nanoparticles and one-dimensional nanomaterials by adjusting initial polymer concentration and solvent solubility parameters. Our study may bring new avenues for controlling the nanostructures of soft nanomaterials.
Collapse
Affiliation(s)
- Hui Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Ying Leng
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiaoyan Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiao Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
8
|
One‐Pot Structure‐Controlled Synthesis of Hyperbranched Polymers by a “Latent” Inimer Strategy Based on Diels–Alder Chemistry. Angew Chem Int Ed Engl 2022; 61:e202211713. [DOI: 10.1002/anie.202211713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/07/2022]
|
9
|
Yang N, Jiang Y, Tan Q, Ma J, Zhan D, Wang Z, Wang X, Zhang D, Hadjichristidis N. One‐Pot Structure‐Controlled Synthesis of Hyperbranched Polymers by a "Latent" Inimer Strategy Based on Diels‐Alder Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neng Yang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Yu Jiang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science Minzu Road Wuhan CHINA
| | - Qinwen Tan
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Jiahui Ma
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Dezhi Zhan
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Zhaohong Wang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Xin Wang
- KAUST: King Abdullah University of Science and Technology KAUST Catalysis Center CHINA
| | - Daohong Zhang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Nikos Hadjichristidis
- KAUST: King Abdullah University of Science and Technology KAUST Catalysis Center CHINA
| |
Collapse
|
10
|
Jeon J, Kang H, Lee K, Sohn BH. Patch formation on diblock copolymer micelles confined in templates for inducing patch orientation and cyclic colloidal molecules. J Colloid Interface Sci 2022; 616:813-822. [PMID: 35248968 DOI: 10.1016/j.jcis.2022.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Chemically or physically distinct patches can be induced on the micelles of amphiphilic block copolymers, which facilitate directional binding for the creation of hierarchical structures. Hence, control over the direction of patches on the micelles is a crucial factor to attain the directionality on the interactions between the micelles, particularly for generating colloidal molecules mimicking the symmetry of molecular structures. We hypothesized that direction and combination of the patches could be controlled by physical confinement of the micelles. EXPERIMENTS We first confined spherical micelles of diblock copolymers in topographic templates fabricated from nanopatterns of block copolymers by adjusting the coating conditions. Then, patch formation was conducted on the confined micelles by exposing them with a core-favorable solvent. Microscopic techniques of SEM, TEM, and AFM were employed to investigate directions of patches and structures of combined micelles in the template. FINDINGS The orientation of the patches on the micelles was guided by the physical confinement of the micelles in linear trenches. In addition, by confining the micelles in a circular hole, we obtained a specific polygon arrangement of the micelles depending on the number of micelles in the hole, which enabled the formation of cyclic colloidal molecules consisting of micelles.
Collapse
Affiliation(s)
- Jonghyuk Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejung Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Luo X, Li Z, Zhang L, Chen Y, Tan J. Mechanistic Investigation of the Position of Reversible Addition–Fragmentation Chain Transfer (RAFT) Groups in Heterogeneous RAFT Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyi Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongchuan Li
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
12
|
Jiang L, Wang L, Li S, Huang W, Xue X, Yang H, Jiang Q, Jiang B, Chen D. Noncovalent Postmodification Guided Reversible Compartmentalization of Polymeric Micelles. ACS Macro Lett 2022; 11:687-692. [PMID: 35570808 DOI: 10.1021/acsmacrolett.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compartmentalized micelles (CMs) are promising tailor-made soft matters that mimic natural designed structures and functions. Despite the structure of complex CMs, manipulating CM structures accessibly and reversibly remains elusive. Here, we report the fabrication of CMs via a generally valid noncovalent postmodification process. Starting from precursor micelles (PMs) based on one diblock copolymer, aromatic modification leads to the compartmentalization of PMs into well-defined spherical CMs. Control over compartment number, size and distribution in CMs, and segment distribution in their linear hierarchical assemblies is attained by simply tuning the postmodification degree and solvent composition. We also demonstrate the reversible transformation between PM and CMs during several heating-cooling cycles, which endows the micelles with potential in reversible functional transitions in situ close to nature's capability. Moreover, both hierarchically assembled or ill-structured micelles can rearrange into homogeneous CMs after one heating-cooling cycle, featuring the postmodification guided compartmentalization strategy with unprecedented micelle reproducibility.
Collapse
Affiliation(s)
- Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lisheng Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Shuai Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Daoyong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Zhang J, Jiang J, Lin S, Cornel EJ, Li C, Du J. Polymersomes: from macromolecular self‐assembly to particle assembly. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiamin Zhang
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jinhui Jiang
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Sha Lin
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Erik Jan Cornel
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Chang Li
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jianzhong Du
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine Tongji University Shanghai 200434 China
| |
Collapse
|
15
|
Sun H, Chen S, Li X, Leng Y, Zhou X, Du J. Lateral growth of cylinders. Nat Commun 2022; 13:2170. [PMID: 35449206 PMCID: PMC9023456 DOI: 10.1038/s41467-022-29863-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The precise control of the shape, size and microstructure of nanomaterials is of high interest in chemistry and material sciences. However, living lateral growth of cylinders is still very challenging. Herein, we propose a crystallization-driven fusion-induced particle assembly (CD-FIPA) strategy to prepare cylinders with growing diameters by the controlled fusion of spherical micelles self-assembled from an amphiphilic homopolymer. The spherical micelles are heated upon glass transition temperature (Tg) to break the metastable state to induce the aggregation and fusion of the amorphous micelles to form crystalline cylinders. With the addition of extra spherical micelles, these micelles can attach onto and fuse with the cylinders, showing the living character of the lateral growth of cylinders. Computer simulations and mathematical calculations are preformed to reveal the total energy changes of the nanostructures during the self-assembly and CD-FIPA process. Overall, we demonstrated a CD-FIPA concept for preparing cylinders with growing diameters.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China.
| | - Shuai Chen
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China. .,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China.
| |
Collapse
|
16
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
17
|
Mei G, Zheng Y, Fu Y, Huo M. Polymerization-induced self-assembly of random bottlebrush copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00858k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers have shown unique self-assembly behaviors, providing an access to hierarchical nanoparticles with a precise structure and tailorable function. However, the self-assembly pattern of random bottlebrush copolymers (random BBCPs)...
Collapse
|
18
|
Li D, Liu N, Zeng M, Ji J, Chen X, Yuan J. Customizable nano-sized colloidal tetrahedrons by polymerization-induced particle self-assembly (PIPA). Polym Chem 2022. [DOI: 10.1039/d2py00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, large-scale preparation of patchy nanoparticles remains challenging. Here, we...
Collapse
|
19
|
Ren H, Wei Z, Wei H, Yu D, Li H, Bi F, Xu B, Zhang H, Hua Z, Yang G. Pyridine-containing block copolymeric nano-assemblies obtained through complementary hydrogen-bonding directed polymerization-induced self-assembly in water. Polym Chem 2022. [DOI: 10.1039/d2py00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diversity of pyridine-containing polymeric nanomaterials with controllable structures and multiple responses were developed through complementary hydrogen-bonding directed polymerization-induced self-assembly in aqueous solution.
Collapse
Affiliation(s)
- Hui Ren
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zengming Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Hongyu Li
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Binbin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hui Zhang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
20
|
Chen X, An N, Zeng M, Yuan J. Host-guest complexation modulated aqueous polymerization-induced self-assembly for monodisperse hierarchical nanoflowers. Chem Commun (Camb) 2021; 57:13720-13723. [PMID: 34854440 DOI: 10.1039/d1cc05561e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This work presents a one-step synthesis of monodisperse nanoflowers by aqueous polymerization-induced self-assembly (PISA), modulated by host-guest interactions. Owing to the low monomer swelling of nanoparticles restricted by host-guest complexation, hierarchical surficial micellar structures were generated at the outer surface of the vesicles, forming fractal nanoflowers with a diameter polydispersity as low as 1.01. Our method allows the straightforward synthesis of monodisperse hierarchical nanoparticles for a wide range of applications.
Collapse
Affiliation(s)
- Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. .,School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, P. R. China
| | - Nankai An
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
21
|
Sarkar J, Lim YF, Goto A. Synthesis of Biologically Decomposable Terpolymer Nanocapsules and Higher‐Order Nanoassemblies Using RCMP‐PISA. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Ying Faye Lim
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| |
Collapse
|
22
|
Wan J, Fan B, Putera K, Kim J, Banaszak Holl MM, Thang SH. Polymerization-Induced Hierarchical Self-Assembly: From Monomer to Complex Colloidal Molecules and Beyond. ACS NANO 2021; 15:13721-13731. [PMID: 34375086 DOI: 10.1021/acsnano.1c05089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nanoscale hierarchical design that draws inspiration from nature's biomaterials allows the enhancement of material performance and enables multifarious applications. Self-assembly of block copolymers represents one of these artificial techniques that provide an elegant bottom-up strategy for the synthesis of soft colloidal hierarchies. Fast-growing polymerization-induced self-assembly (PISA) renders a one-step process for the polymer synthesis and in situ self-assembly at high concentrations. Nevertheless, it is exceedingly challenging for the fabrication of hierarchical colloids via aqueous PISA, simply because most monomers produce kinetically trapped spheres except for a few PISA-suitable monomers. We demonstrate here a sequential one-pot synthesis of hierarchically self-assembled polymer colloids with diverse morphologies via aqueous PISA that overcomes the limitation. Complex formation of water-immiscible monomers with cyclodextrin via "host-guest" inclusion, followed by sequential aqueous polymerization, provides a linear triblock terpolymer that can in situ self-assemble into hierarchical nanostructures. To access polymer colloids with different morphologies, three types of linear triblock terpolymers were synthesized through this methodology, which allows the preparation of AXn-type colloidal molecules (CMs), core-shell-corona micelles, and raspberry-like nanoparticles. Furthermore, the phase separations between polymer blocks in nanostructures were revealed by transmission electron microscopy and atomic force microscopy-infrared spectroscopy. The proposed mechanism explained how the interfacial tensions and glass transition temperatures of the core-forming blocks affect the morphologies. Overall, this study provides a scalable method of the production of CMs and other hierarchical structures. It can be applied to different block copolymer formulations to enrich the complexity of morphology and enable diverse functions of nano-objects.
Collapse
|
23
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
24
|
In situ conversion from crew-cut to hairy micelles by surface-initiated polymerization. J Colloid Interface Sci 2021; 603:468-477. [PMID: 34214723 DOI: 10.1016/j.jcis.2021.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Whether spherical micelles of block copolymers have short or long coronas is intrinsically determined by the molecular weight of the corona-forming block with respect to that of the core block before the micelles are assembled. Because of the inherent conditions of packing copolymer chains into a micelle, the core diameter is altered when we assemble a micelle from a block copolymer having a long corona block, compared to that having a short corona block with the same length of the core block. However, micelles with the same core diameter but having various corona lengths can be guaranteed when the corona is extended upon surface-initiated polymerization on the micelles. Herein, we demonstrated in situ conversion from crew-cut to hairy micelles by selectively extending a corona block while maintaining the spherical shape of block copolymer micelles. We first synthesized block copolymers having a chain transfer agent (CTA) positioned at the end of the corona block and then assembled them into a crew-cut micelle. Employing this micelle as an assembly of macro-CTAs, we conducted surface-initiated polymerization on the micelle by photo-induced energy/electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Since PET-RAFT enables the polymerization at room temperature, the corona block was selectively extended with preservation of the core diameter, thereby converting a crew-cut micelle to a hairy one. In addition, by applying the same polymerization protocol to a worm-like micelle, we could selectively extend the coronas, leading to the formation of a worm-like micelle with a long corona. If such copolymer chains were assembled into a micelle, we would obtain a spherical micelle instead of a worm-like micelle having a hairy corona, which is difficult to assess because of the inherent packing problem.
Collapse
|
25
|
Han S, Wu J, Zhang Y, Lai J, Chen Y, Zhang L, Tan J. Utilization of Poor RAFT Control in Heterogeneous RAFT Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Song Han
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiarui Wu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxuan Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Lai
- Guangdong Hvege UV Material Co., Ltd., Zhongshan 528445, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
26
|
Fan B, Wan J, Zhai J, Chen X, Thang SH. Triggered Degradable Colloidal Particles with Ordered Inverse Bicontinuous Cubic and Hexagonal Mesophases. ACS NANO 2021; 15:4688-4698. [PMID: 33646766 DOI: 10.1021/acsnano.0c09166] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We herein report a facile strategy to prepare triggered degradable block copolymer nano/macro-objects, ranging from typical micelles, worms, jellyfish, and vesicles to rarely achieved spongosomes, cubosomes, and hexosomes via RAFT-mediated polymerization-induced self-assembly (PISA). The morphological transitions from a simple spherical micelle to a spongosome, ordered Im3¯m cubosome, and p6mm hexosome were captured and demonstrated by TEM, SEM, and synchrotron SAXS. In addition, morphological phase diagrams including important factors, such as solid contents, degree of polymerization (DP), and stabilizer block chain length, were constructed to unveil the formation mechanism and guide the scalable preparation of complex morphologies with packing parameter (P) > 1. This study not only represents an example that achieved inverse mesophases via acrylate-based monomers with high conversion but also reports a triggered degradable system in the most extended morphological range via PISA. The facile synthesis and stimuli-responsiveness of our system should greatly expand the utility of polymer inverse mesophases for triggered releasing, templating, and many other applications.
Collapse
Affiliation(s)
| | | | - Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | | | | |
Collapse
|
27
|
Huang J, Liu D, Chen Y, Zhang L, Tan J. Preparation of Block Copolymer Nano-Objects with Embedded β-Ketoester Functional Groups by Photoinitiated RAFT Dispersion Polymerization. Macromol Rapid Commun 2021; 42:e2000720. [PMID: 33538048 DOI: 10.1002/marc.202000720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Herein, a photoinitiated reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-(acetoacetoxy)ethyl methacrylate (AEMA) in ethanol/water at room temperature for in situ preparation of β-ketoester-functionalized block copolymer nano-objects is reported. AEMA is also copolymerized with isobornyl methacrylate (IBOMA) to improve the colloidal stability of PIBOMA-based block copolymer nano-objects prepared by photoinitiated RAFT dispersion polymerization at low temperatures. A series of P(IBOMA-stat-AEMA)-based block copolymer nano-objects are prepared by changing reaction parameters. Finally, lanthanide-doped block copolymer nano-objects with luminescent and magnetic properties are also prepared based on the complexation of various lanthanide ions with the β-ketoester group. It is expected that the current study will provide a facile platform for the in situ preparation of β-ketoester-functionalized block copolymer nano-objects with different morphologies for specific applications.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
28
|
Liu Z, Wu C, Fu Y, Xu X, Ying J, Sheng J, Huang Y, Ma C, Chen T. Synthesis of Janus Au@BCP nanoparticles via UV light-initiated RAFT polymerization-induced self-assembly. NANOSCALE ADVANCES 2021; 3:347-352. [PMID: 36131741 PMCID: PMC9417084 DOI: 10.1039/d0na00900h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/28/2020] [Indexed: 05/31/2023]
Abstract
It is a great challenge to fabricate Janus inorganic/polymeric hybrid nanoparticles with both precisely controlled nanostructures and high yields. Herein, we report a new method to synthesize Janus Au@BCPs via UV light-initiated RAFT polymerization-induced self-assembly in situ at a high solid content. This strategy provides a promising alternative for achieving asymmetric hybrid nanoparticles with a controllable size, tunable morphology and convenient operation.
Collapse
Affiliation(s)
- Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou Taizhou 318000 P. R. China
| | - Chenglin Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Yabo Fu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 P. R. China
| | - Xinlei Xu
- Research Institute of Zhejiang University-Taizhou Taizhou 318000 P. R. China
| | - Jialei Ying
- Research Institute of Zhejiang University-Taizhou Taizhou 318000 P. R. China
| | - Jiansong Sheng
- Research Institute of Zhejiang University-Taizhou Taizhou 318000 P. R. China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 P. R. China
- National Engineering Research Centre for Advanced Polymer Processing Technology, Zhengzhou University Zhengzhou 450002 P. R. China
| | - Chunxin Ma
- Research Institute of Zhejiang University-Taizhou Taizhou 318000 P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University Haikou 570228 P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
| |
Collapse
|
29
|
Abstract
This review summarizes the recent non-thermal initiation methods in RAFT mediated polymerization-induced self-assembly (PISA), including photo-, redox/oscillatory reaction-, enzyme- and ultrasound wave-initiation.
Collapse
Affiliation(s)
- Nankai An
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| |
Collapse
|
30
|
Kadirkhanov J, Yang CL, Chang ZX, Zhu RM, Pan CY, You YZ, Zhang WJ, Hong CY. In situ cross-linking polymerization-induced self-assembly not only generates cross-linked structures but also promotes morphology transition by the cross-linker. Polym Chem 2021. [DOI: 10.1039/d1py00046b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Not only cross-linked structures but also a promoting effect on morphology transition has been observed during the in situ cross-linking PISA by RAFT dispersion copolymerization of 2-(diisopropylamino)ethyl methacrylate and cystaminebismethacrylamide.
Collapse
Affiliation(s)
- Jamshid Kadirkhanov
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Cheng-Lin Yang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Zi-Xuan Chang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ren-Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| |
Collapse
|