1
|
Lee S, Lee G, Oh M. MOF-on-MOF Growth: Inducing Naturally Nonpreferred MOFs and Atypical MOF Growth. Acc Chem Res 2024; 57:3113-3125. [PMID: 39388366 DOI: 10.1021/acs.accounts.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
ConspectusOverflowing metal-organic frameworks (MOFs) have been synthesized from a wide range of metal and organic components for specific purposes and intellectual curiosity. Each MOF has unique chemical and structural characteristics directed by the incorporated components, metal ions (or clusters), organic linkers, and their intrinsic coordination interactions. These incorporated components and structural characteristics are two pivotal factors influencing MOFs' fundamental properties and subsequent applications. Therefore, selecting the appropriate metal and organic components, considering their innate chemical and structural properties, is crucial to endow the final MOFs with the desired properties. Ultimately, producing MOFs with a desired structure using ideal components is the best approach to achieving the best MOFs tailored for specific purposes with desired properties. However, achieving MOFs with the intended structure from chosen components remains underdeveloped. In many cases, the resulting MOF structure is governed by the thermodynamically and/or kinetically preferred configuration (refers to a naturally preferred structure) of the chosen components and given reaction conditions. Additionally, producing hybrid MOFs with complex components, structures, and morphologies presents a great opportunity to obtain special MOFs with advanced properties and functions. In this Account, we outline our group's efforts over the past few years to develop naturally nonpreferred MOFs through the induced MOF-on-MOF growth process and atypical hybrid MOFs via nonstandard MOF-on-MOF growth. First, we highlight the prime strategy for producing naturally nonpreferred MOFs based on template-induced MOF-on-MOF growth. In this section, we discuss the two basic growth behaviors, isotropic and anisotropic growth of naturally nonpreferred MOFs, determined by the degree of matching between the cell lattices of the two MOFs. Second, we introduce the MOF farming concept for the productive cultivation and effective harvesting of naturally nonpreferred MOFs made by MOF-on-MOF growth. Here we discuss the importance of selecting the ideal MOF template for productive growth and developing an efficient method for harvesting cultivated MOFs. Next, we describe atypical anisotropic MOF-on-MOF growths between two MOFs with mismatched cell lattices. In this section, we introduce tip-to-middle MOF-on-MOF growth involving self-structural adjustment of the secondary MOF, logical inference of unidentified MOF structures based on MOF-on-MOF growth behavior and morphological features, and MOF-on-MOF growth accompanied by etching and transformation of the template. Finally, we discuss the perspectives and challenges of MOF-on-MOF growth and the synthesis of naturally nonpreferred MOFs. We hope that this Account offers valuable insights into the rational design and development of MOFs with desired structural and compositional characteristics, leading to the creation of ideal MOFs.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Qiao M, Wang Z, Zhang J, Li Y, Chen LA, Zhang F, Dordick JS, Linhardt RJ, Cai C, Huang H, Zhang X. Nanopore-regulated in situ polymerization for synthesis of homogeneous heparan sulfate with low dispersity. Carbohydr Polym 2024; 341:122297. [PMID: 38876729 DOI: 10.1016/j.carbpol.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
The biological activities of heparan sulfate (HS) are intimately related to their molecular weights, degree and pattern of sulfation and homogeneity. The existing methods for synthesizing homogeneous sugar chains of low dispersity involve multiple steps and require stepwise isolation and purification processes. Here, we designed a mesoporous metal-organic capsule for the encapsulation of glycosyltransferase and obtained a microreactor capable of enzymatically catalyzing polymerization reactions to prepare homogeneous heparosan of low dispersity, the precursor of HS and heparin. Since the sugar chain extension occurs in the pores of the microreactor, low molecular weight heparosan can be synthesized through space-restricted catalysis. Moreover, the glycosylation co-product, uridine diphosphate (UDP), can be chelated with the exposed metal sites of the metal-organic capsule, which inhibits trans-cleavage to reduce the molecular weight dispersity. This microreactor offers the advantages of efficiency, reusability, and obviates the need for stepwise isolation and purification processes. Using the synthesized heparosan, we further successfully prepared homogeneous 6-O-sulfated HS of low dispersity with a molecular weight of approximately 6 kDa and a polydispersity index (PDI) of 1.032. Notably, the HS generated exhibited minimal anticoagulant activity, and its binding affinity to fibroblast growth factor 1 was comparable to that of low molecular weight heparins.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junjie Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Le Huec T, López-Francés A, Abánades Lázaro I, Navalón S, Baldoví HG, Giménez-Marqués M. Heteroepitaxial MOF-on-MOF Photocatalyst for Solar-Driven Water Splitting. ACS NANO 2024; 18:20201-20212. [PMID: 39075870 PMCID: PMC11308772 DOI: 10.1021/acsnano.4c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Assembly of different metal-organic frameworks (MOFs) into hybrid MOF-on-MOF heterostructures has been established as a promising approach to develop synergistic performances for a variety of applications. Here, we explore the performance of a MOF-on-MOF heterostructure by epitaxial growth of MIL-88B(Fe) onto UiO-66(Zr)-NH2 nanoparticles. The face-selective design and appropriate energy band structure alignment of the selected MOF constituents have permitted its application as an active heterogeneous photocatalyst for solar-driven water splitting. The composite achieves apparent quantum yields for photocatalytic overall water splitting at 400 and 450 nm of about 0.9%, values that compare much favorably with previous analogous reports. Understanding of this high activity has been gained by spectroscopic and electrochemical characterization together with scanning transmission and transmission electron microscopy (STEM, TEM) measurements. This study exemplifies the possibility of developing a MOF-on-MOF heterostructure that operates under a Z-scheme mechanism and exhibits outstanding activity toward photocatalytic water splitting under solar light.
Collapse
Affiliation(s)
- Thibaut Le Huec
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, C/Catedrático José Beltrán Martínez,
2, 46980 Paterna, Valencia, Spain
| | - Antón López-Francés
- Departamento
de Química, Universitat Politècnica
de València, C/Camino
de Vera, s/n, 46022 Valencia, Spain
| | - Isabel Abánades Lázaro
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, C/Catedrático José Beltrán Martínez,
2, 46980 Paterna, Valencia, Spain
| | - Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, C/Camino
de Vera, s/n, 46022 Valencia, Spain
| | - Herme G. Baldoví
- Departamento
de Química, Universitat Politècnica
de València, C/Camino
de Vera, s/n, 46022 Valencia, Spain
| | - Mónica Giménez-Marqués
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, C/Catedrático José Beltrán Martínez,
2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
4
|
Grami M, Rafiee Z. Fabrication of magnetic carbohydrate-modified iron oxide nanoparticles (Fe 3O 4/pectin) decorated with bimetallic Co/Cu-MOF as an effective and recoverable catalyst for the Biginelli reaction. RSC Adv 2024; 14:24175-24184. [PMID: 39101064 PMCID: PMC11295140 DOI: 10.1039/d4ra03182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Due to their biocompatibility, facile recoverability, mechanical and thermal stability, high surface area, and active catalytic sites, magnetic nanocomposites, containing natural polymers and magnetic nanoparticles, have been used to produce supports for catalysts or biocatalysts. Pectin, an important polycarbohydrate, has abundant functional groups with excellent ability to coat the surface of the nanoparticles to fabricate composite and hybrid materials. A novel bimetallic cobalt(ii) and copper(ii)-based metal-organic framework (Co/Cu-MOF) immobilized pectin-modified Fe3O4 magnetic nanocomposite was designed and fabricated. Fe3O4 nanoparticles were modified in situ by pectin and, subsequently, used as a support for growing Co/Cu-MOF [Fe3O4/pectin/(Co/Cu)MOF]. The properties of the nanocomposite were investigated by FT-IR, XRD, SEM, EDS, VSM, STA, and BET. The nanocomposite exhibited both magnetic characteristics and a high surface area, making it a suitable candidate for catalytic applications. Then, the Fe3O4/pectin/(Co/Cu)MOF nanocomposite was utilized in the Biginelli reaction for the production of biologically active dihydropyrimidinones. Due to paramagnetism, Fe3O4/pectin/(Co/Cu)MOF was easily recovered and reused in six cycles without significant loss in reactivity. This green method comprises several benefits, such as mild reaction conditions, free-solvent media, high yields, easy workup, short reaction times and reusability of the prepared catalyst.
Collapse
Affiliation(s)
- Majid Grami
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-741-222-3048 +98-741-222-3048
| | - Zahra Rafiee
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-741-222-3048 +98-741-222-3048
| |
Collapse
|
5
|
Mohsenpour Tehrani M, Chehrazi E. Metal-Organic-Frameworks Based Mixed-Matrix Membranes for CO 2 Separation: An Applicable-Conceptual Approach. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32906-32929. [PMID: 38907700 DOI: 10.1021/acsami.4c06914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
A promising class of porous crystalline materials, metal-organic frameworks (MOFs), have recently emerged as a potential material in fabricating mixed matrix membranes (MMMs) for gas separation applications. Their unique chemistry and structural versatility offer substantial advantages over conventional fillers. This review gives an in-depth exploration of MOF chemistry, focusing on strategies to manipulate their adsorption behavior to enhance separation properties. We scrutinize the impact of various MOF-based MMM components, including polymer matrix, MOFs fillers and polymer/filler interface, on the overall gas separation performance. This involves a detailed analysis of key parameters associated with MMM preparation. Additionally, we offer a comprehensive overview of the determining factors in MOF-based MMM development for gas separation, including MOF structure, synthesis, and chemistry. Moreover, the most advances in modification strategies of MOF for CO2 separation, such as a wide variety of hybrid MOFs will be outlined, which opens the door to an improved CO2 separation process. Finally, the gas transport mechanisms of MMMs are thoroughly discussed to understand the factors affecting the gas permeation through the polymer matrix, MOFs and interface between them.
Collapse
Affiliation(s)
- Melika Mohsenpour Tehrani
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Ehsan Chehrazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
6
|
He L, Xu H, Cui Y, Qi J, Wang X, Jin Q. Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption. Molecules 2024; 29:2426. [PMID: 38893301 PMCID: PMC11173442 DOI: 10.3390/molecules29112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon-based magnetic metal composites derived from metal-organic frameworks (MOFs) are promising materials for the preparation of broadband microwave absorbers. In this work, the leaf-like co-doped porous carbon/carbon nanotube heterostructure was obtained using ZIF-L@ZIF-67 as precursor. The number of carbon nanotubes can be controlled by varying the amount of ZIF-67, thus regulating the dielectric constant of the sample. An optimum reflection loss of -42.2 dB is attained when ZIF-67 is added at 2 mmol. An effective absorption bandwidth (EAB) of 4.8 GHz is achieved with a thickness of 2.2 mm and a filler weight of 12%. The excellent microwave absorption (MA) ability is generated from the mesopore structure, uniform heterogeneous interfaces, and high conduction loss. The work offers useful guidelines to devise and prepare such nanostructured materials for MA materials.
Collapse
Affiliation(s)
- Liming He
- The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China; (L.H.); (Y.C.)
| | - Hongda Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (H.X.); (X.W.)
| | - Yang Cui
- The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China; (L.H.); (Y.C.)
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (H.X.); (X.W.)
| | - Quan Jin
- The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China; (L.H.); (Y.C.)
| |
Collapse
|
7
|
Bao T, Xi Y, Zhang C, Du P, Xiang Y, Li J, Yuan L, Yu C, Liu C. Highly efficient nitrogen fixation over S-scheme heterojunction photocatalysts with enhanced active hydrogen supply. Natl Sci Rev 2024; 11:nwae093. [PMID: 38577667 PMCID: PMC10989659 DOI: 10.1093/nsr/nwae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Photocatalytic N2 fixation is a promising strategy for ammonia (NH3) synthesis; however, it suffers from relatively low ammonia yield due to the difficulty in the design of photocatalysts with both high charge transfer efficiency and desirable N2 adsorption/activation capability. Herein, an S-scheme CoSx/ZnS heterojunction with dual active sites is designed as an efficient N2 fixation photocatalyst. The CoSx/ZnS heterojunction exhibits a unique pocket-like nanostructure with small ZnS nanocrystals adhered on a single-hole CoSx hollow dodecahedron. Within the heterojunction, the electronic interaction between ZnS and CoSx creates electron-deficient Zn sites with enhanced N2 chemisorption and electron-sufficient Co sites with active hydrogen supply for N2 hydrogenation, cooperatively reducing the energy barrier for N2 activation. In combination with the promoted photogenerated electron-hole separation of the S-scheme heterojunction and facilitated mass transfer by the pocket-like nanostructure, an excellent N2 fixation performance with a high NH3 yield of 1175.37 μmol g-1 h-1 is achieved. This study provides new insights into the design of heterojunction photocatalysts for N2 fixation.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yitong Xiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
9
|
Liu Y, Huang S, Huang X, Ma D. Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and homo/hetero-junctions. MATERIALS HORIZONS 2024; 11:1611-1637. [PMID: 38294286 DOI: 10.1039/d3mh01645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have garnered attention in photocatalysis due to their unique features including extensive surface area, adjustable pores, and the ability to incorporate various functional groups. However, challenges such as limited visible light absorption and rapid electron-hole recombination often hinder their photocatalytic efficiency. Recent developments have introduced plasmonic nanoparticles (NPs) and junctions to enhance the photocatalytic performance of MOFs/COFs. This paper provides a comprehensive review of recent advancements in MOF/COF-based photocatalysts improved by integration of plasmonic NPs and junctions. We begin by examining the utilization of plasmonic NPs, known for absorbing longer-wavelength light compared to typical MOFs/COFs. These NPs exhibit localized surface plasmon resonance (LSPR) when excited, effectively enhancing the photocatalytic performance of MOFs/COFs. Moreover, we discuss the role of homo/hetero-junctions in facilitating charge separation, further boosting the photocatalytic performance of MOFs/COFs. The mechanisms behind the improved photocatalytic performance of these composites are discussed, along with an assessment of challenges and opportunities in the field, guiding future research directions.
Collapse
Affiliation(s)
- Yannan Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- Énergie Matériauxet Télécommunications, Institut National de la Recherche Scientifque (INRS), 1650 Bd Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| | - Shengyun Huang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xing Huang
- Department of Synthetic Materials and Functional Devices, Max-Planck Institute of Microstructure Physics, 06120, Halle, Germany
| | - Dongling Ma
- Énergie Matériauxet Télécommunications, Institut National de la Recherche Scientifque (INRS), 1650 Bd Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| |
Collapse
|
10
|
Xu J, Guo H, Wang M, Hao Y, Tian J, Ren H, Liu Y, Ren B, Yang W. Hollow Ni 3S 4@Co 3S 4 with core-satellite nanostructure derived from metal-organic framework (MOF)-on-MOF hybrids as an electrode material for supercapacitors. Dalton Trans 2024; 53:4479-4491. [PMID: 38348673 DOI: 10.1039/d3dt04038k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Metal-organic frameworks (MOFs) have found wide applications in the field of supercapacitors due to their highly controllable porous structure, big specific surface area, and abundant chemical functional groups. MOF-on-MOF hybrids not only enhance the composition of MOFs (such as ligands and/or metal centers) but also provide greater structural diversity. By utilizing MOFs as precursors for preparing sulfides, the unique characteristics and inherent structure of MOFs are preserved but their conductivity and capacitance are enhanced. This study successfully synthesized hollow-structured Ni3S4@Co3S4 derived from an Ni-MOF@ZIF-67 hybrid structure, where the Ni-MOF serves as the core and ZIF-67 as the satellite. The Ni3S4@Co3S4 electrode demonstrated a specific capacity as high as 747.3 C g-1 at 1 A g-1, and it could still maintain 77% of its initial capacity at 10 A g-1. Furthermore, the assembled Ni3S4@Co3S4//AC hybrid supercapacitor (HSC) device achieved a maximum energy density of 30.8 W h kg-1 when the power density was 750 W kg-1. The device exhibited remarkable cycling durability, retaining 85.4% of its initial capacitance after 5000 cycles. Therefore, the derived functional materials based on MOF-on-MOF provide a more scalable and promising approach for the preparation of efficient electrode materials.
Collapse
Affiliation(s)
- Jiaxi Xu
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Mingyue Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Yanrui Hao
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Jiaying Tian
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Henglong Ren
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Yinsheng Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Borong Ren
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| |
Collapse
|
11
|
Shi XM, Wang Z, Chen MH, Wu QQ, Chen FZ, Fan GC, Zhao WW. Highly Light-Harvesting MOF-on-MOF Heterostructure: Cascading Functionality to Flexible Photogating of Organic Photoelectrochemical Transistor and Bienzyme Cascade Detection. Anal Chem 2024; 96:3679-3685. [PMID: 38353671 DOI: 10.1021/acs.analchem.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Recently, organic photoelectrochemical transistor (OPECT) bioanalysis has become a prominent technique for the high-performance detection of biomolecules. However, as a sensitive index of the OPECT, the dynamic regulation transconductance (gm) is still severely deficient. Herein, this work reports a new photosensitive metal-organic framework (MOF-on-MOF) heterostructure for the effective modulation of maximum gm and natural bienzyme interfacing toward choline detection. Specifically, the bidentate ligand MOF (b-MOF) was assembled onto the UiO-66 MOF (u-MOF) by a modular assembly method, which could facilitate the charge separation and generate enhanced photocurrents and offer a biophilic environment for the immobilization of choline oxidase (ChOx) and horseradish peroxidase (HRP) through hydrogen-bonded bridges. The transconductance of the OPECT could be flexibly altered by increased light intensity to maximal value at zero gate bias, and sensitive choline detection was achieved with a detection limit of 0.2 μM. This work reveals the potential of MOF-on-MOF heterostructures for futuristic optobioelectronics.
Collapse
Affiliation(s)
- Xiao-Mei Shi
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Zhen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Miao-Hua Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing-Qing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Gao-Chao Fan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Yuan L, Du P, Yin L, Yao J, Wang J, Liu C. Metal-organic framework-based S-scheme heterojunction photocatalysts. NANOSCALE 2024. [PMID: 38393670 DOI: 10.1039/d3nr06677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Photocatalysis is a promising technology to resolve energy and environmental issues, where the design of high-efficiency photocatalysts is the central task. As an emerging family of photocatalysts, semiconducting metal-organic frameworks (MOFs) with remarkable features have demonstrated great potential in various photocatalytic fields. Compared to MOF-based photocatalysts with a single component, construction of S-scheme heterojunctions can render MOFs with enhanced charge separation, redox capacity and solar energy utilization, and thus improved photocatalytic performance. Herein, an overview of the recent advances in the design of MOF-based S-scheme heterojunctions for photocatalytic applications is provided. The basic principle of S-scheme heterojunctions is introduced. Then, three types of MOF-based S-scheme heterojunctions with different compositions are systematically summarized including MOF/non-MOF, MOF-on-MOF and MOF-derived heterojunctions. Afterwards, the enhanced performances of MOF-based S-scheme heterojunctions in hydrogen production, CO2 reduction, C-H functionalization, H2O2 production and wastewater treatment are highlighted. Lastly, the current challenges and future prospects regarding the design and applications of MOF-based S-scheme heterojunctions are discussed to inspire the further development of this emerging field.
Collapse
Affiliation(s)
- Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| | - Luli Yin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Jiamin Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Jing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| |
Collapse
|
13
|
Wang Z, Wang H, Shi P, Qiu J, Guo R, You J, Zhang H. Hybrid organic frameworks: Synthesis strategies and applications in photocatalytic wastewater treatment - A review. CHEMOSPHERE 2024; 350:141143. [PMID: 38195015 DOI: 10.1016/j.chemosphere.2024.141143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
Hybrid organic framework materials are a class of hierarchical porous crystalline materials that have emerged in recent years, composed of three types of porous crystal materials, namely metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs). The combination of various organic framework properties in hybrid organic frameworks generates synergistic effects, which has attracted widespread attention from researchers. The synthesis methods of hybrid organic frameworks are also an intriguing topic, enabling the formation of core-shell heterostructures through epitaxial growth, template conversion, medium growth, or direct combination. These hybrid organic framework materials have demonstrated remarkable performance in the application of photocatalytic wastewater purification and have developed various forms of applications. This article reviews the preparation principles and methods of various hybrid organic frameworks and provides a detailed overview of the research progress of photocatalytic water purification hybrid organic frameworks. Finally, the challenges and development prospects of hybrid organic framework synthesis and their application in water purification are briefly discussed.
Collapse
Affiliation(s)
- Zhaobo Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Hongxin Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Peng Shi
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jiangyuan Qiu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
14
|
Fang X, Zou J, Mi X, Ma N, Dai W. Synergistic Boosting Capture Ability of Thiophene Sulfur with a Novel Dual-Amino-Functionalized MOF-on-MOF Adsorbent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2405-2415. [PMID: 38233372 DOI: 10.1021/acs.langmuir.3c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A single metal-organic framework (MOF) exhibits some drawbacks in deep adsorptive desulfurization such as insufficient functional active sites, water instability, low surface area, etc. Herein, a dual-amino-functionalized (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) core-shell dual MOF adsorbent was first synthesized by the hydrothermal growth method. The adsorption performance of thiophene sulfur (ThS) is systematically investigated and evaluated at mild temperatures through batch tests. The (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) exhibits good adsorption ability toward ThS, which is attributed to the associative effects of dual MOFs with structure features such as hydrogen bond, open metal active sites, suitable pore sizes and π-π conjugation, etc. Meanwhile, the (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) embedded 25 wt % water still remains crystal intact and good adsorption desulfurization performance, which is attributed to the NH2- functional groups. After five recycles, more than 90% ThS uptake onto (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) could be recovered, exhibiting good reuse performance. This study presents a new strategy for grafting MOF-on-MOF with specific functional groups to improve the abilities of desulfurization and water resistance.
Collapse
Affiliation(s)
- Xiuxuan Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiaying Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xichen Mi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
15
|
Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: A promising eco-friendly hybrid from green synthesis to dual application (Adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci 2024; 654:495-522. [PMID: 37862801 DOI: 10.1016/j.jcis.2023.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Herein, the green synthesis of heterogeneous dual functional MIL88A-on-MIL88B hybrids (MIL: Materials InstituteLavoisier) with different amounts of MIL88B compared to MIL88A, including 1:2, 1:1, and 2:1, has been carried out. The photocatalytic degradation of tetracycline and adsorption of tetracycline and dyes (Direct Red 80, Direct Red 23, Acid Blue 92, and Reactive Orange 14) were investigated. Although the ratio of MIL88A-on-MIL88B (1:1) hybrid displayed the best activity, there is a slight difference in the photocatalytic performance of the other mass ratios studied. The result revealed that after 70 min of forming MIL88A on MIL88B, the best pollutant removal performance is obtained. During the limited synthesis time, the lopsided growth of MIL88A on the MIL88B surface limits the formation of sufficient functional groups and new pores between MIL88B as the substrate and MIL88A, which are effective and decisive in the performance. In the photocatalytic studies, the synthesized composite had good compatibility with the zero-order kinetics, and hydroxyl radicals were recognized as the most active species in the photocatalytic reaction. In the adsorption process, the MIL88A-on-MIL88A composite followed pseudo-second-order kinetics and the Langmuir isotherm. Besides, mechanisms such as π-π interaction/stacking, hydrogen bonding, and π-metal interaction were proposed for the pollutant adsorption process.
Collapse
Affiliation(s)
- Bahareh Rabeie
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| |
Collapse
|
16
|
Lee S, Lee G, Oh M. Induced Production of Atypical Naturally Nonpreferred Metal-Organic Frameworks and Their Detachment via Provoking Post-Mismatching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303580. [PMID: 37246265 DOI: 10.1002/smll.202303580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 05/30/2023]
Abstract
The structures of metal-organic frameworks (MOFs) are typically determined by the building blocks that compose them and the conditions under which they are formed. MOFs tend to adopt a thermodynamically and/or kinetically stable structure (naturally preferred form). Thus, constructing MOFs with naturally nonpreferred structures is a challenging task, as it requires avoiding the easier pathway toward a naturally preferred MOF. Herein, an approach to construct naturally nonpreferred dicarboxylate-linked MOFs employing reaction templates is reported. This strategy relies on the registry between the surface of the template and the cell lattice of a target MOF, which reduces the effort required to form naturally nonpreferred MOFs. Reactions of p-block trivalent metal ions (Ga3+ and In3+ ) with dicarboxylic acids typically produce preferred MIL-53 or MIL-68. However, the surface of UiO-67 (and UiO-66) template exhibits the well-defined hexagonal lattice, which induce the selective formation of a naturally nonpreferred MIL-88 structure. Inductively grown MIL-88s are purely isolated from the template via provoking a post-mismatch in their lattices and weakening the interfacial interaction between product and template. It is also discovered that an appropriate template for effective induced production of naturally nonpreferred MOFs shall be properly selected based on the cell lattice of a target MOF.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
17
|
Pei C, Su R, Lu S, Chen X, Ding Y, Li R, Shu W, Zeng Y, Lin Y, Xu L, Mi Y, Wan J. Hollow multishelled heterostructures with enhanced performance for laser desorption/ionization mass spectrometry based metabolic diagnosis. J Mater Chem B 2023; 11:8206-8215. [PMID: 37554072 DOI: 10.1039/d3tb00766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
High-performance metabolic diagnosis-based laser desorption/ionization mass spectrometry (LDI-MS) improves the precision diagnosis of diseases and subsequent treatment. Inorganic matrices are promising for the detection of metabolites by LDI-MS, while the structure and component impacts of the matrices on the LDI process are still under investigation. Here, we designed a multiple-shelled ZnMn2O4/(Co, Mn)(Co, Mn)2O4 (ZMO/CMO) as the matrix from calcined MOF-on-MOF for detecting metabolites in LDI-MS and clarified the synergistic impacts of multiple-shells and the heterostructure on LDI efficiency. The ZMO/CMO heterostructure allowed 3-5 fold signal enhancement compared with ZMO and CMO with the same morphology. Furthermore, the ZMO/CMO heterostructure with a triple-shelled hollow structure displayed a 3-fold signal enhancement compared to its nanoparticle counterpart. Taken together, the triple-shelled hollow ZMO/CMO exhibits 102-fold signal enhancement compared to the commercial matrix products (e.g., DHB and DHAP), allowing for sensitive metabolic profiling in bio-detection. We directly extracted metabolic patterns by the optimized triple-shelled hollow ZMO/CMO particle-assisted LDI-MS within 1 s using 100 nL of serum and used machine learning as the readout to distinguish hepatocellular carcinoma from healthy controls with the area under the curve value of 0.984. Our approach guides us in matrix design for LDI-MS metabolic analysis and drives the development of a nanomaterial-based LDI-MS platform toward precision diagnosis.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Rui Su
- Tianjin Second People's Hospital, Tianjin Medical University, Tianjin 300192, China.
- Tianjin Institute of Hepatology, Tianjin 300192, China
| | - Songting Lu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Yajie Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Yu Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Liang Xu
- Tianjin Second People's Hospital, Tianjin Medical University, Tianjin 300192, China.
| | - Yuqiang Mi
- Tianjin Second People's Hospital, Tianjin Medical University, Tianjin 300192, China.
- Tianjin Institute of Hepatology, Tianjin 300192, China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| |
Collapse
|
18
|
He Q, Bai J, Wang H, Liu S, Jun SC, Yamauchi Y, Chen L. Emerging Pristine MOF-Based Heterostructured Nanoarchitectures: Advances in Structure Evolution, Controlled Synthesis, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303884. [PMID: 37625077 DOI: 10.1002/smll.202303884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Metal-organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF-based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF-based heterostructures, as it can achieve precise regulation of MOF-based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF-based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF-based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF-based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
19
|
Xu W, Li S, Ji J, Chen H, Feng Y. Site-specific growth of gold nanoparticles on Bismuth Selenide hexagonal nanoplates. J Colloid Interface Sci 2023; 649:826-831. [PMID: 37390530 DOI: 10.1016/j.jcis.2023.06.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Highly site-specific growth of gold nanoparticles (AuNPs) on Bismuth Selenide (Bi2Se3) hexagonal nanoplates was achieved by fine-tuning the growth kinetics of Au through controlling the coordination number of the Au ion in MBIA-Au3+ complex. With increasing concentration of MBIA, the increased amount and the coordination number of the MBIA-Au3+ complex results in the decrease of the reduction rate of Au. The slowed growth kinetics of Au allowed the recognition of the sites with different surface energy on the anisotropic Bi2Se3 hexagonal nanoplates. As a result, the site-specific growth of AuNPs at the corner, the edge, and the surface of the Bi2Se3 nanoplates were successfully achieved. This way of growth kinetic control was proven to be effective in constructing well-defined heterostructures with precise site-specificity and high purity of the product. This is helpful for the rational design and controlled synthesis of sophisticated hybrid nanostructures and would eventually promote their applications in various fields.
Collapse
Affiliation(s)
- Wenjia Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China; School of Physical and Mathematical Science, Nanjing Tech University, Nanjing 211816, PR China
| | - Shuaibin Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jin Ji
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Hongyu Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuhua Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
20
|
Xu R, Zhang X, Zelekew OA, Schott E, Wu YN. Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal-organic framework (ZIF-8). RSC Adv 2023; 13:17194-17201. [PMID: 37304779 PMCID: PMC10248541 DOI: 10.1039/d3ra01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Porous materials such as metal-organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micropores are occupied by enzyme molecules. To address these issues, a novel hierarchically structured zeolitic imidazolate framework-8 (HZIF-8) was prepared to study the effects of different laccase immobilization approaches such as the post-synthesis (LAC@HZIF-8-P) and de novo (LAC@HZIF-8-D) immobilization of catalytic activities for removing 2,4-dichlorophenol (2,4-DCP). The results showed higher catalytic activity for the laccase-immobilized LAC@HZIF-8 prepared using different methods than for the LAC@MZIF-8 sample, with 80% of 2,4-DCP removed under optimal conditions. These results could be attributable to the multistage structure of HZIF-8. The LAC@HZIF-8-D sample was stable and superior to LAC@HZIF-8-P, maintaining a 2,4-DCP removal efficiency of 80% after three recycles and demonstrating superior laccase thermostability and storage stability. Moreover, after loading with copper nanoparticles, the LAC@HZIF-8-D approach exhibited a 2,4-DCP removal efficiency of 95%, a promising finding for its potential use in environmental purification.
Collapse
Affiliation(s)
- Ran Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Xujie Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Osman Ahmend Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
- Department of Materials Science and Engineering, Adama Science and Technology University Adama Ethiopia
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile Vicuña Mackenna 4860, Macul Santiago Chile
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| |
Collapse
|
21
|
Figueroa-Quintero L, Villalgordo-Hernández D, Delgado-Marín JJ, Narciso J, Velisoju VK, Castaño P, Gascón J, Ramos-Fernández EV. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. SMALL METHODS 2023; 7:e2201413. [PMID: 36789569 DOI: 10.1002/smtd.202201413] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.
Collapse
Affiliation(s)
- Leidy Figueroa-Quintero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - David Villalgordo-Hernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - José J Delgado-Marín
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Vijay Kumar Velisoju
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jorge Gascón
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| |
Collapse
|
22
|
Chen J, Li Y, Liang G, Ma N, Dai W. Boosted capture of trace Cd(II) with a magnetic dual metal-organic-framework adsorbent. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
23
|
Łuczak J, Kroczewska M, Baluk M, Sowik J, Mazierski P, Zaleska-Medynska A. Morphology control through the synthesis of metal-organic frameworks. Adv Colloid Interface Sci 2023; 314:102864. [PMID: 37001207 DOI: 10.1016/j.cis.2023.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Designable morphology and predictable properties are the most challenging goals in material engineering. Features such as shape, size, porosity, agglomeration ratio significantly affect the final properties of metal-organic frameworks (MOFs) and can be regulated throughout synthesis parameters but require a deep understanding of the mechanisms of MOFs formation. Herein, we systematically summarize the effects of the individual synthesis factors, such as pH of reaction mixture, including acidic or basic character of modulators, temperature, solvents types, surfactants type and content and ionic liquids on the morphology of growing MOFs. We identified main mechanisms of MOFs' growth leading to different morphology of final particles and next systematically discuss the effect of miscellaneous parameters on MOFs morphology based on the main mechanisms related to the nucleation, growth and formation of final MOFs structure, including coordination modulation, protonation/deprotonation acting and modulation by surfactants or capping agents. The effect of microwaves and ultrasound employment during synthesis is also considered due to their affecting especially nucleation and particles growing steps during MOFs formation.
Collapse
Affiliation(s)
- Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Malwina Kroczewska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mateusz Baluk
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jakub Sowik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Paweł Mazierski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | |
Collapse
|
24
|
Simultaneous determination of four aflatoxins using dispersive micro solid phase extraction with magnetic bimetallic MOFs composite as a sorbent and high-performance liquid chromatography with fluorescence detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Dung DT, Lam DV, Roh E, Ji S, Yuk JM, Kim JH, Kim H, Lee SM. Ni/Co/Co 3O 4@C nanorods derived from a MOF@MOF hybrid for efficient overall water splitting. NANOSCALE 2023; 15:1794-1805. [PMID: 36602000 DOI: 10.1039/d2nr05686k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The design of nanostructured materials for efficient bifunctional electrocatalysts has gained tremendous attention, yet developing a fast and effective synthesis strategy remains a challenge. Here, we present a fast and scalable synthetic method of Ni/Co/Co3O4@C nanorods for efficient overall water splitting. Using microwave synthesis, we first produced a unique Ni-MOF@Co-MOF in a few minutes. Subsequently, we transformed the MOF@MOF into hybrid Ni/Co/Co3O4 nanoparticles covered with graphitic carbon in a few seconds using laser-scribing. The prepared bimetallic catalysts showed remarkably low overpotentials of 246 mV for the oxygen evolution reaction (OER) and 143 mV for the hydrogen evolution reaction (HER) at a current density of 30 mA cm-2. An electrolyzer assembled with the bimetallic catalysts delivered a high current density of 20 mA cm-2 at a voltage of 1.6 V and exhibited good durability (nearly 91.6% retention even after a long-running operation of 24 h at a voltage of 1.52 V). Our proposed method could serve as a powerful method for creating various multimetallic hybrid nanocatalysts with unique hierarchical structures from diverse MOFs.
Collapse
Affiliation(s)
- Dao Thi Dung
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Do Van Lam
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
| | - Euijin Roh
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea
| | - Sanghyeon Ji
- Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Deajeon, 34141, South Korea
| | - Jong Min Yuk
- Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Deajeon, 34141, South Korea
| | - Jae-Hyun Kim
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Hyunuk Kim
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea
| | - Seung-Mo Lee
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
26
|
Ojaghzadeh Khalil Abad M, Masrournia M, Javid A. Simultaneous determination of paclitaxel and vinorelbine from environmental water and urine samples based on dispersive micro solid phase extraction-HPLC using a green and novel MOF-On-MOF sorbent composite. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Hang T, Meng X, Wu Y, Zhu XD, Li C. Ion-Exchange Reaction-Mediated Hierarchical Dual Z-Scheme Heterojunction for Split-Type Photoelectrochemical Immunoassays. Anal Chem 2022; 94:17295-17302. [PMID: 36451079 DOI: 10.1021/acs.analchem.2c04302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Photoelectrochemical (PEC) immunoassays with ultrasensitive detection abilities are highly desirable for in vitro PEC diagnosis and biological detection. In this paper, dual Z-scheme PEC immunoassays with hierarchical nanostructures (TiO2@NH2-MIL-125@CdS) are synthesized through epitaxial growth of MOF-on-MOF and further in situ derivatization. The dual Z-scheme configuration not only extends the light absorption range but also increases the redox ability due to the interface structure nanoengineering, which synergistically suppresses bulk carrier recombination and promotes the charge transfer efficiency at the electron level. Furthermore, a smart MOF-derived labeling probe (CuO@ZnO nanocube) is designed to develop a split-type PEC biosensor by using prostate-specific antigen (PSA) as a target biomarker. In the presence of PSA, the Ab2-labeled CuO@ZnO would specifically bond to the dual Z-scheme electrode. Then, the MOF-derived CuO@ZnO is dissolved by hydrochloric acid to release Cu2+, which could replace Cd2+ via an ion-exchange reaction, thus leading to the decrease of the photocurrent due to the destruction of the dual Z-scheme configuration. In typical applications, the split-type PEC immunoassay exhibits an excellent detection performance for PSA with a LOD as low as 0.025 pg·mL-1.
Collapse
Affiliation(s)
- Tianxiang Hang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Yueyue Wu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xian-Dong Zhu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| |
Collapse
|
28
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|
29
|
Jia B, Bing L, Xu B, Sun J, Bai S. Fabrication of Functionalized UiO-66 Anchored on Disorderly Layered Clinoptilolite via Surfactant-Assisted Induction for Selective Adsorption of CO 2 and CH 4. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14644-14655. [PMID: 36427194 DOI: 10.1021/acs.langmuir.2c02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The amine (NH2)-functionalized UiO-66 was successfully anchored on disorderly layered clinoptilolite (CP) via surfactant (poly(ethylene glycol) (PEG) and poly(vinylpyrrolidone) (PVP))-assisted induction. The structural features and physicochemical parameters of the resultant UiO-66-on-CPs were characterized by powder X-ray diffraction (XRD) patterns, scanning/transmission electron microscopy (SEM/TEM) images, Fourier transform infrared (FT-IR) spectra, N2 sorption isotherms, and small-angle X-ray scattering (SAXS) patterns. The results demonstrated that the growth of UiO-66-NH2 nanoparticles facilitated the disorder degree of the crystal plane of CP along the a-axis, while the addition of PEG in the hydrothermal synthesis system of CP was conducive to the formation of a flower-like microstructure and the introduction of PVP was beneficial to the nucleation and growth of UiO-66-NH2 nanoparticles with a small size (40 nm) on the surfaces of the obtained CP-PEG lamellas. Finally, the gas-selective adsorption and separation performances of CO2 and CH4 were evaluated using the synthesized disorderly layered UiO-66-on-CP heterostructures as adsorbents, indicating that the NH2-functionalized UiO-66-on-CP exhibited a superior selective factor (3.66) of CO2/CH4. These results elucidated that the proposed approach is a promising strategy for constructing MOF-on-zeolite heterostructures, which may open an avenue to expand CP application and improve their performance.
Collapse
Affiliation(s)
- Bingying Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing100124, China
| | - Liujie Bing
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing100124, China
| | - Bang Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing100124, China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing100124, China
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
30
|
Jin Y, Mi X, Qian J, Ma N, Dai W. Modular Construction of an MIL-101(Fe)@MIL-100(Fe) Dual-Compartment Nanoreactor and Its Boosted Photocatalytic Activity toward Tetracycline. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48285-48295. [PMID: 36253373 DOI: 10.1021/acsami.2c14489] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Iron-based metal-organic frameworks (MOFs) have aroused extensive concern as prospective photocatalysts for antibiotic (e.g., tetracycline, TC) degradation. However, efficiencies of single and simple Fe-based MOFs still undergo restricted light absorption and weak charge separation. Assembly of different iron-based MOF building blocks into a hybrid MOF@MOF heterostructure reactor could be an encouraging strategy for the effective capture of antibiotics from the aqueous phase. This paper reports a new-style MIL-101(Fe)@MIL-100(Fe) photocatalyst, which was groundbreakingly constructed to realize a double win for boosting the performances of adsorption and photocatalysis. The optical response range, surface open sites, and charge separation efficiency of MIL-101(Fe)@MIL-100(Fe) can be regulated through accurate design and alteration. Attributed to the synergistic effects of double iron-based MOFs, MIL-101(Fe)@MIL-100(Fe) exhibits an excellent photocatalytic activity toward TC degradability compared to MIL-101(Fe) and MIL-100(Fe), which is even superior to those reported previously in the literature. Furthermore, the main active species of •O2- and h+ were proved through trapping tests of the photocatalytic process. Additionally, MIL-101(Fe)@MIL-100(Fe) possesses remarkable stability, maintaining more than 90% initial photocatalytic activity after the fifth cycle. In brief, MIL-101(Fe)@MIL-100(Fe) was highly efficient for TC degradation. Our work offers a new strategy for visible-light photodegradation of TC by exploring the double Fe-based MOF composite.
Collapse
Affiliation(s)
- Yuning Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua321004, People's Republic of China
| | - Xichen Mi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua321004, People's Republic of China
| | - Jianglu Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua321004, People's Republic of China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua321004, People's Republic of China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua321004, People's Republic of China
| |
Collapse
|
31
|
Wang Y, Zhang Z, Li J, Yuan Y, Yang J, Xu W, An P, Xi S, Guo J, Liu B, Li J. Two‐Dimensional‐on‐Three‐Dimensional Metal‐Organic Frameworks for Photocatalytic H
2
Production. Angew Chem Int Ed Engl 2022; 61:e202211031. [DOI: 10.1002/anie.202211031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Wang
- College of Materials Science and Opto-electronic Technology University of Chinese Academy of Sciences Yanqi Lake, Huairou District Beijing 101408 P. R. China
| | - Zhiyong Zhang
- Department of Materials Science and Engineering School of Physical Science and Engineering Beijing Jiaotong University Beijing 100044 P. R. China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiwen Yuan
- College of Materials Science and Opto-electronic Technology University of Chinese Academy of Sciences Yanqi Lake, Huairou District Beijing 101408 P. R. China
| | - Jun Yang
- College of Materials Science and Opto-electronic Technology University of Chinese Academy of Sciences Yanqi Lake, Huairou District Beijing 101408 P. R. China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Beijing 100049 P. R. China
- RICMASS Rome International Center for Materials Science Superstripes Rome Italy
| | - Pengfei An
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Beijing 100049 P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences Agency for Science Technology and Research Singapore Singapore
| | - Jianping Guo
- State Key Laboratory of Solid Waste Reuse for Building Materials Beijing Building Materials Academy of Science Research Beijing 100041 P. R. China
| | - Bo Liu
- Department of Materials Science and Engineering School of Physical Science and Engineering Beijing Jiaotong University Beijing 100044 P. R. China
| | - Jianfeng Li
- College of Materials Science and Opto-electronic Technology University of Chinese Academy of Sciences Yanqi Lake, Huairou District Beijing 101408 P. R. China
| |
Collapse
|
32
|
Chen D, Huang Q, Ding J, Li TT, Yu D, Nie H, Qian J, Yang Z. Heteroepitaxial metal-organic frameworks derived cobalt and nitrogen codoped carbon nanosheets to boost oxygen reduction. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Alhmaunde A, Masrournia M, Javid A. Facile synthesis of new magnetic sorbent based on MOF-on-MOF for simultaneous extraction and determination of three benzodiazepines in various environmental water samples using dispersive micro solid-phase extraction and HPLC. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Zhu J, Zhou H, Wang R, Wang C. Core-shell nanosheets@MIL-101(Fe) heterostructures with enhanced photocatalytic activity promoted by peroxymonosulfate. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Bao T, Zou Y, Zhang C, Yu C, Liu C. Morphological Anisotropy in Metal–Organic Framework Micro/Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202209433. [DOI: 10.1002/anie.202209433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
37
|
Bao T, Zou Y, Zhang C, Yu C, Liu C. Morphological Anisotropy in Metal‐Organic Framework Micro‐/Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Bao
- East China Normal University School of Chemistry and Molecular Engineering No.500, Dongchuan Road Shanghai CHINA
| | - Yingying Zou
- East China Normal University School of Chemistry and Molecular Engineering No.500, Dongchuan Road Shanghai CHINA
| | - Chaoqi Zhang
- East China Normal University School of Chemistry and Molecular Engineering No.500, Dongchuan Road Shanghai CHINA
| | - Chengzhong Yu
- University of Queensland - Saint Lucia Campus: The University of Queensland Australian Institute for Bioengineering and Nanotechnology AUSTRALIA
| | - Chao Liu
- East China Normal University School of Chemistry and Molecular Engineering No.500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
38
|
Wang Y, Zhang Z, Li J, Yuan Y, Yang J, Xu W, An P, Xi S, Guo J, Liu B, Li J. Two Dimensional‐on‐Three Dimensional Metal‐Organic Frameworks for Photocatalytic H 2 Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Wang
- University of the Chinese Academy of Sciences College of Materials Science and Opto-electronic Technology CHINA
| | - Zhiyong Zhang
- Beijing Jiaotong University Department of Materials Science and Engineering, School of Physical Science and Engineering CHINA
| | - Jing Li
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yiwen Yuan
- University of the Chinese Academy of Sciences College of Materials Science and Opto-electronic Technology CHINA
| | - Jun Yang
- University of the Chinese Academy of Sciences College of Materials Science and Opto-electronic Technology CHINA
| | - Wei Xu
- Institute of High Energy Physics Beijing Synchrotron Radiation Facility CHINA
| | - Pengfei An
- Institute of High Energy Physics Beijing Synchrotron Radiation Facility CHINA
| | - Shibo Xi
- Agency for Science Technology and Research Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research SINGAPORE
| | - Jianping Guo
- Beijing Building Materials Academy of Science Research State Key Laboratory of Solid Waste Reuse for Building Materials CHINA
| | - Bo Liu
- Beijing Jiaotong University Department of Materials Science and Engineering, School of Physical Science and Engineering CHINA
| | - Jianfeng Li
- University of Chinese Academy of Sciences College of Materials Science and Opto-electronic Technology YanQi LakeHuaiRou District 101408 Beijing CHINA
| |
Collapse
|
39
|
Qiao M, Ji Y, Linhardt RJ, Zhang X, Huang H. Fabricating Bimetal Organic Material Capsules with a Commodious Microenvironment and Synergistic Effect for Glycosyltransferase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26034-26043. [PMID: 35578904 DOI: 10.1021/acsami.2c04644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) are rarely applied as solid supports in the enzymatic synthesis of oligosaccharides and polysaccharides, as glycosyltransferases are readily inactivated by traditional MOFs due to the poor compatibility and the limited mass transfer for complex carbohydrates in MOFs. Here, on the basis of the synthetic methods of zeolitic imidazolate framework-90 (ZIF-90), we prepared bimetal organic material (BMOM) microreactors that successfully encapsulated Pasteurella multocida heparosan synthase 2 (PmHS2), a critical glycosyltransferase in the enzymatic synthesis of heparin and heparan sulfate. The second metal ion introduced can increase the mesopores in the BMOM, stabilize the active pocket of glycosyltransferase, and facilitate the deprotonation of critical amino acid residues, Asp and Glu of PmHS2, to initiate the catalyzation. On the basis of this bimetallic microreactor, heparosan disaccharide, oligosaccharide, and polysaccharide are successfully prepared in quantitative yield, providing a viable BMOM-based immobilization strategy to simulate the physiological microenvironment for glycosyltransferase.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
40
|
Gu Z, Zhang W, Pan T, Shen Y, Qin P, Zhang P, Li X, Liu L, Li L, Fu Y, Zhang W, Huo F. Anisotropic MOF-on-MOF Growth of Isostructural Multilayer Metal-Organic Framework Heterostructures. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9854946. [PMID: 34877539 PMCID: PMC8613540 DOI: 10.34133/2021/9854946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
Isostructural MOFs with similar crystallographic parameter are easily available for MOF-on-MOF growth and possible to form core–shell structure by isotropic growth. However, due to well-matched cell lattice, selective growth in isostructural MOF heterostructures remains a great challenge for engineering atypical MOF heterostructures. Herein, an anisotropic MOF-on-MOF growth strategy was developed to structure a range of multilayer sandwich-like ZIF-L heterostructures via stacking isostructural ZIF-L-Zn and ZIF-L-Co alternately with three-, five-, seven-, and more layer structures. Moreover, these heterostructures with highly designable feature were fantastic precursors for fabricating derivatives with tunable magnetic and catalytic properties. Such strategy explores a novel way of achieving anisotropic MOF-on-MOF growth between isostructural MOFs and opens up new horizons for regulating the properties by MOF modular assembly in versatile functional nanocomposites.
Collapse
Affiliation(s)
- Zhida Gu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Wenlei Zhang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Peng Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Xiaohan Li
- College of Science, Northeastern University, Shenyang 100819, China
| | - Liwei Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Linjie Li
- College of Science, Northeastern University, Shenyang 100819, China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| |
Collapse
|
41
|
Wang Y, Bao Z, Shi M, Liang Z, Cao R, Zheng H. The Role of Surface Curvature in Electrocatalysts. Chemistry 2021; 28:e202102915. [PMID: 34591340 DOI: 10.1002/chem.202102915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/05/2022]
Abstract
Excessive consumption of fossil fuels has caused unavoidable environmental problems. The development of renewable and clean alternatives is essential for the sustainable and green development of human society. Electrocatalysts are most important parts in these energy-related devices. Recently, scientists found that the surface curvature of electrocatalysts could play an important role for the improvement of catalytic performance and the optimization of intrinsic catalytic activity during electrocatalytic process. The role of surface curvature in electrocatalysts is still under investigating. In this minireview, we summarized the latest progress of electrocatalysts with different surface curvatures and their applications in energy-related applications. This review mainly involves the strategies for preparation of electrocatalysts with different surface curvatures, three typical electrocatalysts with different surface curvatures (curled surface, onion-like structure, and spiral structure), and the potential mechanisms that surface curvature in electrocatalysts affects activities.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengke Shi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
42
|
Chai L, Pan J, Hu Y, Qian J, Hong M. Rational Design and Growth of MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100607. [PMID: 34245231 DOI: 10.1002/smll.202100607] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Indexed: 06/13/2023]
Abstract
Multiporous metal-organic frameworks (MOFs) have emerged as a subclass of highly crystalline inorganic-organic materials, which are endowed with high surface areas, tunable pores, and fascinating nanostructures. Heterostructured MOF-on-MOF composites are recently becoming a research hotspot in the field of chemistry and materials science, which focus on the assembly of two or more different homogeneous or heterogeneous MOFs with various structures and morphologies. Compared with one single MOF, the dual MOF-on-MOF composites exhibit unprecedented tunability, hierarchical nanostructure, synergistic effect, and enhanced performance. Due to the difference of inorganic metals and organic ligands, the lattice parameters in a, b, and c directions in the single crystal cells could bring about subtle or large structural difference. It will result in the composite material with distinct growth methods to obtain secondary MOF grown from the initial MOF. In this review, the authors wish to mainly outline the latest synthetic strategies of heterostructured MOF-on-MOFs and their derivatives, including ordered epitaxial growth, random epitaxial growth, etc., which show the tutorial guidelines for the further development of various MOF-on-MOFs.
Collapse
Affiliation(s)
- Lulu Chai
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
43
|
Yue K, Zhang X, Jiang S, Chen J, Yang Y, Bi F, Wang Y. Recent advances in strategies to modify MIL-125 (Ti) and its environmental applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116108] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Song J, He B, Shen H, Wu Z, Yu J, Lei W, Xia X, Du P, Hao Q. Rational Design of a ZIF‐67/Cobalt‐Glycolate Heterostructure with Improved Conductivity for High Cycling Stability and High‐Capacity Lithium Storage. ChemElectroChem 2021. [DOI: 10.1002/celc.202100444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Juanjuan Song
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Bin He
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Honglong Shen
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Zongdeng Wu
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Jia Yu
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Wu Lei
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Xifeng Xia
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Ping Du
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Qingli Hao
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| |
Collapse
|
46
|
Inter-MOF hybrid (IMOFH): A concise analysis on emerging core–shell based hierarchical and multifunctional nanoporous materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213786] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
|
48
|
Kampouri S, Ebrahim FM, Fumanal M, Nord M, Schouwink PA, Elzein R, Addou R, Herman GS, Smit B, Ireland CP, Stylianou KC. Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14239-14247. [PMID: 33749235 DOI: 10.1021/acsami.0c23163] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A strategy for enhancing the photocatalytic performance of MOF-based systems (MOF: metal-organic framework) is developed through the construction of MOF/MOF heterojunctions. The combination of MIL-167 with MIL-125-NH2 leads to the formation of MIL-167/MIL-125-NH2 heterojunctions with improved optoelectronic properties and efficient charge separation. MIL-167/MIL-125-NH2 outperforms its single components MIL-167 and MIL-125-NH2, in terms of photocatalytic H2 production (455 versus 0.8 and 51.2 μmol h-1 g-1, respectively), under visible-light irradiation, without the use of any cocatalysts. This is attributed to the appropriate band alignment of these MOFs, the enhanced visible-light absorption, and long charge separation within MIL-167/MIL-125-NH2. Our findings contribute to the discovery of novel MOF-based photocatalytic systems that can harvest solar energy and exhibit high catalytic activities in the absence of cocatalysts.
Collapse
Affiliation(s)
- Stavroula Kampouri
- Laboratory for Molecular Simulations, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l'Industrie 17, Sion 1951, Switzerland
| | - Fatmah M Ebrahim
- Laboratory for Molecular Simulations, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l'Industrie 17, Sion 1951, Switzerland
| | - Maria Fumanal
- Laboratory for Molecular Simulations, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l'Industrie 17, Sion 1951, Switzerland
| | - Makenzie Nord
- Department of Chemistry, Oregon State University, Gilbert Hall 153, Corvallis, Oregon 97331-4003, United States
| | - Pascal A Schouwink
- Laboratory for Molecular Simulations, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l'Industrie 17, Sion 1951, Switzerland
| | - Radwan Elzein
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Rafik Addou
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Gregory S Herman
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Berend Smit
- Laboratory for Molecular Simulations, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l'Industrie 17, Sion 1951, Switzerland
| | - Christopher P Ireland
- Laboratory for Molecular Simulations, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l'Industrie 17, Sion 1951, Switzerland
| | - Kyriakos C Stylianou
- Laboratory for Molecular Simulations, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l'Industrie 17, Sion 1951, Switzerland
- Department of Chemistry, Oregon State University, Gilbert Hall 153, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
49
|
Redkov A, Kukushkin S. Theoretical aspects of the growth of a non-Kossel crystal from vapours: role of advacancies. Faraday Discuss 2021; 235:362-382. [DOI: 10.1039/d1fd00083g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth of an arbitrary multicomponent non-Kossel crystal via the Burton–Cabrera–Frank mechanism is studied, considering the effect of advacancies and their recombination with adatoms on the surface. An analysis is...
Collapse
|
50
|
Ha J, Moon HR. Synthesis of MOF-on-MOF architectures in the context of interfacial lattice matching. CrystEngComm 2021. [DOI: 10.1039/d0ce01883j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight summarises the previously reported MOF-on-MOF systems, with a focus on the presented crystallographic information and classification of the systems according to lattice parameter matching.
Collapse
Affiliation(s)
- Junsu Ha
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|