1
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
2
|
DʼEste E, Lukinavičius G, Lincoln R, Opazo F, Fornasiero EF. Advancing cell biology with nanoscale fluorescence imaging: essential practical considerations. Trends Cell Biol 2024; 34:671-684. [PMID: 38184400 DOI: 10.1016/j.tcb.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Recently, biologists have gained access to several far-field fluorescence nanoscopy (FN) technologies that allow the observation of cellular components with ~20 nm resolution. FN is revolutionizing cell biology by enabling the visualization of previously inaccessible subcellular details. While technological advances in microscopy are critical to the field, optimal sample preparation and labeling are equally important and often overlooked in FN experiments. In this review, we provide an overview of the methodological and experimental factors that must be considered when performing FN. We present key concepts related to the selection of affinity-based labels, dyes, multiplexing, live cell imaging approaches, and quantitative microscopy. Consideration of these factors greatly enhances the effectiveness of FN, making it an exquisite tool for numerous biological applications.
Collapse
Affiliation(s)
- Elisa DʼEste
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Gražvydas Lukinavičius
- Chromatin Labelling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center, Göttingen 37075, Germany; NanoTag Biotechnologies GmbH, Göttingen 37079, Germany.
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
3
|
Banerjee M, Anoop A. Exploring the Theoretical Foundations of Thermally Activated Delayed Fluorescence (TADF) Emission: A Comprehensive TD-DFT Study on Phenothiazine Systems. Chemistry 2024; 30:e202304206. [PMID: 38319588 DOI: 10.1002/chem.202304206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
This study conducts a thorough theoretical investigation of Thermally Activated Delayed Fluorescence (TADF) in phenothiazine-based systems, examining ten molecular configurations recognized experimentally as TADF-active. Employing Time-Dependent Density Functional Theory (TD-DFT), our analysis spans the investigation of singlet-triplet energy gaps (ΔEST), spin-orbit coupling, and excitation characteristics using Multiwfn. This approach not only validates the adherence to El Sayed's rule across these systems but also provides a detailed understanding of charge transfer dynamics, as visualized through heat maps. A significant aspect of our study is the exploration of different oxidation states of sulfur and site substitutions on phenothiazine. This systematic variation aims to identify additional TADF-active compounds, drawing parallels with properties characterizing other known TADF emitters. Our investigation into Reverse Intersystem Crossing (rISC) rates and the analysis of dihedral angles in relation to ΔEST values offer nuanced insights into the TADF behaviours of these molecules. By integrating rigorous computational analysis with practical implications, we provide a foundational understanding that enhances the design and optimization of phenothiazine-based materials for optoelectronic applications. This work not only advances our theoretical understanding of TADF in phenothiazine derivatives but also serves as a guide for experimentalists and industry professionals in the strategic design of new TADF materials.
Collapse
Affiliation(s)
- Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
4
|
Nong K, Zhao YL, Yi S, Zhang X, Wei S, Yao ZJ. 3-Acyl-4-Pyranone as a Lysine Residue-Selective Bioconjugation Reagent for Peptide and Protein Modification. Bioconjug Chem 2024; 35:286-299. [PMID: 38451202 DOI: 10.1021/acs.bioconjchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.
Collapse
Affiliation(s)
- Keyi Nong
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yi-Lu Zhao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuchun Zhang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Torii K, Benson S, Hori Y, Vendrell M, Kikuchi K. No-wash fluorogenic labeling of proteins for reversible photoswitching in live cells. Chem Sci 2024; 15:1393-1401. [PMID: 38274070 PMCID: PMC10806661 DOI: 10.1039/d3sc04953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Photoswitchable fluorescent molecules (PSFMs) are positioned as valuable tools for biomolecule localization tracking and super-resolution imaging technologies due to their unique ability to reversibly control fluorescence intensity upon light irradiation. Despite the high demand for PSFMs that are suitable for live-cell imaging, no general method has been reported that enables reversible fluorescence control on proteins of interest in living cells. Herein, we have established a platform to realize reversible fluorescence switching in living cells by adapting a protein labeling system. We have developed a new PSFM, named HTL-Trp-BODIPY-FF, which exhibits strong fluorogenicity upon recognition of Halo-tag protein and reversible fluorescence photoswitching in living cells. This is the first example of a PSFM that can be applicable to a general-purpose Halo-tag protein labeling system for no-wash live-cell imaging.
Collapse
Affiliation(s)
- Kenji Torii
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Yuichiro Hori
- Faculty of Science, Kyushu University Fukuoka Fukuoka 819-0395 Japan
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
6
|
Liu L, Gray JL, Tate EW, Yang A. Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends Biotechnol 2023; 41:1385-1399. [PMID: 37328400 DOI: 10.1016/j.tibtech.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Bacteria have evolved a diverse set of enzymes that enable them to subvert host defense mechanisms as well as to form part of the prokaryotic immune system. Due to their unique and varied biochemical activities, these bacterial enzymes have emerged as key tools for understanding and investigating biological systems. In this review, we summarize and discuss some of the most prominent bacterial enzymes used for the site-specific modification of proteins, in vivo protein labeling, proximity labeling, interactome mapping, signaling pathway manipulation, and therapeutic discovery. Finally, we provide a perspective on the complementary advantages and limitations of using bacterial enzymes compared with chemical probes for exploring biological systems.
Collapse
Affiliation(s)
- Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Janine L Gray
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
7
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
8
|
Xue L, Yu D, Sun J, Guan L, Xie C, Wang L, Jia Y, Tian J, Fan H, Sun H. Rapid GSH detection and versatile peptide/protein labelling to track cell penetration using coumarin-based probes. Analyst 2023; 148:532-538. [PMID: 36349786 DOI: 10.1039/d2an01510b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biothiols play essential roles in balancing the redox state and modulating cellular functions. Fluorescent probes for monitoring/labelling biothiols often suffer from slow reaction rates, strong background fluorescence and cytotoxic byproduct release. Thus, developing facile and versatile probes to overcome the challenges is still in high demand. Here, we report four coumarin-maleimides as fast responding and fluorogenic probes to detect GSH or label peptides/proteins. The probes quantitatively and selectively react with GSH via Michael addition within 1-2 min, achieving an 11-196-fold increase in fluorescence quantum yield via blockage of the photoinduced electron transfer (PET) process. Optimized probe 4 is applied for the detection of GSH in vitro (A549 cells) and in vivo (zebrafish embryos). Taking advantage of the fast Michael addition between the maleimide moiety and the sulfhydryl group, we expand the application of our method for fluorescent labelling of peptides/proteins and for tracking their cellular uptake process. The labelling strategy works for both Cys-bearing and Cys-free proteins after the introduction of a sulfhydryl group using Traut's reagent. Fluorescence assay reveals that the TAT-peptide can efficiently enter cells, but H3 protein, part of nucleosomes, prefers to bind on the cell membrane by electrostatic interactions, shedding light on the cellular uptake activity of nucleosomes and affording a potential membrane staining strategy. Overall, our study illustrates the broad potential of coumarin-maleimide based dual-functional probes for GSH detection and versatile protein labelling in biochemical research.
Collapse
Affiliation(s)
- Li Xue
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China. .,School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P. R. China
| | - Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Jing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Liangyu Guan
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, P. R. China
| | - Chengzhi Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Yuanyuan Jia
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Junyu Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|
9
|
Abdou MM, Abu-Rayyan A, Bedir AG, Abdel-Fattah S, Omar AMA, Ahmed AA, El-Desoky ESI, Ghaith EA. 3-(Bromoacetyl)coumarins: unraveling their synthesis, chemistry, and applications. RSC Adv 2021; 11:38391-38433. [PMID: 35493203 PMCID: PMC9044231 DOI: 10.1039/d1ra05574g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
This review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives. Also, chemical reactions of 3-(bromoacetyl)coumarins as versatile building blocks in the preparation of critical polyfunctionalized heterocyclic systems and other industrially significant scaffolds are described. Recent advances of 3-(bromoacetyl)coumarins as attractive starting points towards a wide scale of five and six-membered heterocyclic systems such as thiophenes, imidazoles, pyrazoles, thiazoles, triazoles, pyrans, pyridines, thiadiazins as well as fused heterocyclic systems have been reported. Additionally, this review covers a wide range of analytical chemistry, fluorescent sensors, and biological applications of these moieties, covering the literature till May 2021.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Ahmed Abu-Rayyan
- Faculty of Science, Applied Science Private University P. O. BOX 166 Amman 11931 Jordan
| | - Ahmed G Bedir
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - S Abdel-Fattah
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - A M A Omar
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Abdullah A Ahmed
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - El-Sayed I El-Desoky
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Eslam A Ghaith
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
10
|
Santos EM, Sheng W, Esmatpour Salmani R, Tahmasebi Nick S, Ghanbarpour A, Gholami H, Vasileiou C, Geiger JH, Borhan B. Design of Large Stokes Shift Fluorescent Proteins Based on Excited State Proton Transfer of an Engineered Photobase. J Am Chem Soc 2021; 143:15091-15102. [PMID: 34516091 DOI: 10.1021/jacs.1c05039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incredible potential for fluorescent proteins to revolutionize biology has inspired the development of a variety of design strategies to address an equally broad range of photophysical characteristics, depending on potential applications. Of these, fluorescent proteins that simultaneously exhibit high quantum yield, red-shifted emission, and wide separation between excitation and emission wavelengths (Large Stokes Shift, LSS) are rare. The pursuit of LSS systems has led to the formation of a complex, obtained from the marriage of a rationally engineered protein (human cellular retinol binding protein II, hCRBPII) and different fluorogenic molecules, capable of supporting photobase activity. The large increase in basicity upon photoexcitation leads to protonation of the fluorophore in the excited state, dramatically red-shifting its emission, leading to an LSS protein/fluorophore complex. Essential for selective photobase activity is the intimate involvement of the target protein structure and sequence that enables Excited State Proton Transfer (ESPT). The potential power and usefulness of the strategy was demonstrated in live cell imaging of human cell lines.
Collapse
Affiliation(s)
- Elizabeth M Santos
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Wei Sheng
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | | | - Setare Tahmasebi Nick
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Alireza Ghanbarpour
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Hadi Gholami
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - James H Geiger
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Michigan State University, Department of Chemistry, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Ma W, Xu B, Sun R, Xu YJ, Ge JF. The application of amide units in the construction of neutral functional dyes for mitochondrial staining. J Mater Chem B 2021; 9:2524-2531. [DOI: 10.1039/d0tb02885a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To develop a new class of neutral fluorescent dyes with mitochondrial staining capacity, a series of functional dyes were obtained from Nile red (2a–e) and coumarin (3a–e) with different amide compounds via Suzuki coupling reactions.
Collapse
Affiliation(s)
- Wei Ma
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| | - Bing Xu
- Technology School of Radiation Medicine and Protection
- Medical College of Soochow University
- School for Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| | - Yu-Jie Xu
- Technology School of Radiation Medicine and Protection
- Medical College of Soochow University
- School for Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|