1
|
Shahid N, Singh AK. Unravelling the kinetics of electro- and photochemical S → O linkage isomerization in Ru(II)-NHC-DMSO complexes utilised for photoinduced substitution reactions. Dalton Trans 2024; 53:12662-12675. [PMID: 39012321 DOI: 10.1039/d4dt01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Our recently reported Ru(III)-NHC complexes 1a and 1b were utilized as suitable precursors to prepare new Ru(II)-NHC-(DMSO)2 complexes 2a and 2b. Complexes 2a and 2b reacted with 2,2'-bipyridine to give complexes 3a and 3b, respectively, with substitution of only one of the DMSO ligands. All new complexes were characterized using various spectroscopic techniques and the molecular structures of 2a and 3a were determined using single-crystal X-ray diffraction technique. Complexes 2a, 2b, 3a, and 3b showed the S → O linkage isomerization of the DMSO ligand upon oxidation of the Ru centre from +II to +III, as confirmed by the thermodynamic and kinetic data obtained from cyclic voltammetry experiments. It was observed that in the bisdimethylsulfoxide complexes 2a and 2b, only one DMSO ligand isomerized, which was further corroborated by the computational studies performed to optimize the geometry of the possible linkage isomers of complexes 2a and 3a in +2 and +3 oxidation states, whereas complexes 3a and 3b showed a high preference for the O-bound isomer in the Ru(III) redox state. The role of NHC in stabilizing the mixed isomer in complexes 2a and 2b and preventing the isomerization of both DMSO ligands coordinated to the Ru centre was studied; moreover, NHC provided good solvent compatibility for photochemical S → O isomerization in all the complexes. Taking advantages of the photoinduced linkage isomerization in 2a and 2b, the synthesis of 3a and 3b was revisited and performed using 2a and 2b, respectively, following a photoinduced substitution reaction in the presence of 2,2'-bipyridine. The kinetics of the reversion from the O-bound to S-bound isomer was found to follow the DMSO-assisted intermolecular S → O isomerization pathway.
Collapse
Affiliation(s)
- Nida Shahid
- Department of Chemistry, Indian Institute of Technology-Indore, Simrol, Khandwa Road, 433552, India.
| | - Amrendra K Singh
- Department of Chemistry, Indian Institute of Technology-Indore, Simrol, Khandwa Road, 433552, India.
| |
Collapse
|
2
|
Pobłocki K, Jarzembska KN, Kamiński R, Drzeżdżon J, Deresz KA, Schaniel D, Gołąbiewska A, Gawdzik B, Rybiński P, Jacewicz D. Porous oligomeric materials synthesised using a new, highly active precatalyst based on ruthenium(III) and 2-phenylpyridine. Dalton Trans 2024; 53:4194-4203. [PMID: 38323842 DOI: 10.1039/d3dt04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
There are few literature reports on using precatalysts based on ruthenium(II/III) ions in the polymerization of olefins. Therefore, a new coordination compound was designed based on ruthenium(III) ion and 2-phenylpyridine. The resulting monocrystal was characterized by X-ray diffraction (XRD), solid-state (photo)IR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The new ruthenium(III) complex compound was used as a precatalyst in the oligomerization reactions of ethylene, 2-propen-1-ol, 2-chloro-2-propen-1-ol, 3-butene-2-ol and 2,3-dibromo-2-propen-1-ol with methylaluminoxane and ethylaluminium dichloride as activators. The catalytic activity of the newly discovered ruthenium(III) complex compound ranges from 159.5 (for 2-chloro-2-propen-1-ol) to 755.6 (for ethylene) g mmol-1 h-1 bar-1, indicating that it is a chemical compound with high catalytic activity. In addition, the oligomerization reaction products were subjected to physicochemical characterization, using BET (Brunauer-Emmett-Teller isotherm), mass spectrometry (MALDI-TOF-MS), Fourier transform infrared (FT-IR) spectroscopy, NMR, TGA, differential scanning calorimetry (DSC), and the morphology of the porous polymeric materials was investigated by SEM. The distinguishing feature of the obtained precatalyst is its high catalytic activity under mild reaction conditions, a rare phenomenon. Compared with other precatalysts, it is the most active ruthenium(II/III) ion-based catalytic material used in oligo- and polymerization reactions of ethylene.
Collapse
Affiliation(s)
- Kacper Pobłocki
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Katarzyna N Jarzembska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Krystyna A Deresz
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Anna Gołąbiewska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Przemysław Rybiński
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
3
|
Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M, Cordones AA, Cho H, Hong K, Ma R, Lee JH, Dakovski GL, Turner JJ, Minitti MP, Quevedo W, Pietzsch A, Beye M, Kim TK, Schoenlein RW, Wernet P, Föhlisch A, Huse N. Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. J Phys Chem Lett 2021; 12:6676-6683. [PMID: 34260255 PMCID: PMC8312498 DOI: 10.1021/acs.jpclett.1c01401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 06/11/2023]
Abstract
We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.
Collapse
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | | | - Miguel Ochmann
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| | - Markus Hantschmann
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Amy A. Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Hana Cho
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Rory Ma
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
- Stanford Institute for Materials and Energy Sciences,
Stanford University, Stanford, California 94305,
United States
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei
University, Seoul 03722, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Philippe Wernet
- Department of Physics and Astronomy,
Uppsala University, 75120 Uppsala,
Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Nils Huse
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| |
Collapse
|
4
|
Vittardi SB, Thapa Magar R, Breen DJ, Rack JJ. A Future Perspective on Phototriggered Isomerizations of Transition Metal Sulfoxides and Related Complexes. J Am Chem Soc 2021; 143:526-537. [PMID: 33400512 DOI: 10.1021/jacs.0c08820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photochromic molecules are examples of light-activated bistable molecules. We highlight the design criteria for a class of ruthenium and osmium sulfoxide complexes that undergo phototriggered isomerization of the bound sulfoxide. The mode of action in these complexes is an excited-state isomerization of the sulfoxide from S-bonded to O-bonded. We discuss the basic mechanism for this transformation and highlight specific examples that demonstrate the effectiveness and efficiency of the isomerization. We subsequently discuss future research directions within the field of phototriggered sulfoxide isomerizations on transition metal polypyridine complexes. These efforts involve new synthetic directions, including the choice of metal as well as new ambidentate ligands for isomerization.
Collapse
Affiliation(s)
- Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Douglas J Breen
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| |
Collapse
|