1
|
Creamer A, Fiego AL, Agliano A, Prados-Martin L, Høgset H, Najer A, Richards DA, Wojciechowski JP, Foote JEJ, Kim N, Monahan A, Tang J, Shamsabadi A, Rochet LNC, Thanasi IA, de la Ballina LR, Rapley CL, Turnock S, Love EA, Bugeon L, Dallman MJ, Heeney M, Kramer-Marek G, Chudasama V, Fenaroli F, Stevens MM. Modular Synthesis of Semiconducting Graft Copolymers to Achieve "Clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300413. [PMID: 36905683 DOI: 10.1002/adma.202300413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.
Collapse
Affiliation(s)
- Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alessandra Lo Fiego
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alice Agliano
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lino Prados-Martin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Håkon Høgset
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Richards
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James E J Foote
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Amy Monahan
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiaqing Tang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - André Shamsabadi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Léa N C Rochet
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioanna A Thanasi
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, 0372, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Vijay Chudasama
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Federico Fenaroli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4021, Norway
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0371, Norway
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Chang K, Sun X, Fu M, Han B, Jiang X, Qi Q, Zhang Y, Ni T, Ge C, Yang Z. H 2O 2-triggered controllable carbon monoxide delivery for photothermally augmented gas therapy. J Mater Chem B 2024; 12:2737-2745. [PMID: 38379390 DOI: 10.1039/d3tb02399k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Carbon monoxide (CO) gas therapy has shown great potential as a very promising approach in the ongoing fight against tumors. However, delivering unstable CO to the tumor site and safely releasing it for maximum efficacy still have unsatisfactory outcomes. In this study, we've developed nanotheranostics (IN-DPPCO NPs) based on conjugated polymer IN-DPP and carbon monoxide (CO) carrier polymer mPEG(CO) for photothermal augmented gas therapy. The IN-DPPCO NPs can release CO with the hydrogen peroxide (H2O2) overexpressed in the tumor microenvironment. Meanwhile, IN-DPPCO NPs exhibit strong absorption in the near-infrared window, showing a high photothermal conversion efficiency of up to 41.5% under 808 nm laser irradiation. In vitro and in vivo experiments demonstrate that these nanotheranostics exhibit good biocompatibility. Furthermore, the synergistic CO/photothermal therapy shows enhanced therapeutic efficacy compared to gas therapy alone. This work highlights the great promise of conjugated polymer nanoparticles as versatile nanocarriers for spatiotemporally controlled and on-demand delivery of gaseous messengers to achieve precision cancer theranostics.
Collapse
Affiliation(s)
- Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Xiaolin Sun
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
- Department of Scientific Research, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Mingying Fu
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Bing Han
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Xiaopeng Jiang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Qiaofang Qi
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Yang Zhang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Tianjun Ni
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Chunpo Ge
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Zhijun Yang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| |
Collapse
|
3
|
Xu C, Yu J, Ning X, Xu M, He S, Wu J, Pu K. Semiconducting Polymer Nanospherical Nucleic Acid Probe for Transcriptomic Imaging of Cancer Chemo-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306739. [PMID: 37660291 DOI: 10.1002/adma.202306739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Real-time in vivo imaging of RNA can enhance the understanding of physio-pathological processes. However, most nucleic acid-based sensors have poor resistance to nucleases and limited photophysical properties, making them suboptimal for this purpose. To address this, a semiconducting polymer nanospherical nucleic acid probe (SENSE) for transcriptomic imaging of cancer immunity in living mice is developed. SENSE comprises a semiconducting polymer (SP) backbone covalently linked with recognition DNA strands, which are complemented by dye-labeled signal DNA strands. Upon detection of targeted T lymphocyte transcript (Gzmb: granzyme B), the signal strands are released, leading to a fluorescence enhancement correlated to transcript levels with superb sensitivity. The always-on fluorescence of the SP core also serves as an internal reference for tracking SENSE uptake in tumors. Thus, SENSE has the dual-signal channel that enables ratiometric imaging of Gzmb transcripts in the tumor of living mice for evaluating chemo-immunotherapy; moreover, it has demonstrated sensitivity and specificity comparable to flow cytometry and quantitative polymerase chain reaction, yet offering a faster and simpler means of T cell detection in resected tumors. Therefore, SENSE represents a promising tool for in vivo RNA imaging.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xiaoyu Ning
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shasha He
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiayan Wu
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
4
|
Xie Q, Tang J, Guo S, Zhao Q, Li S. Recent Progress of Preparation Strategies in Organic Nanoparticles for Cancer Phototherapeutics. Molecules 2023; 28:6038. [PMID: 37630290 PMCID: PMC10459389 DOI: 10.3390/molecules28166038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Phototherapy has the advantages of being a highly targeted, less toxic, less invasive, and repeatable treatment, compared with conventional treatment methods such as surgery, chemotherapy, and radiotherapy. The preparation strategies are significant in order to determine the physical and chemical properties of nanoparticles. However, choosing appropriate preparation strategies to meet applications is still challenging. This review summarizes the recent progress of preparation strategies in organic nanoparticles, mainly focusing on the principles, methods, and advantages of nanopreparation strategies. In addition, typical examples of cancer phototherapeutics are introduced in detail to inform the choice of appropriate preparation strategies. The relative future trend and outlook are preliminarily proposed.
Collapse
Affiliation(s)
| | | | | | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (Q.X.); (J.T.); (S.G.)
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (Q.X.); (J.T.); (S.G.)
| |
Collapse
|
5
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
6
|
Li T, Wu M, Wei Q, Xu D, He X, Wang J, Wu J, Chen L. Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules 2023; 24:1943-1979. [PMID: 37083404 DOI: 10.1021/acs.biomac.2c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.
Collapse
Affiliation(s)
- Tianyu Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengqi Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Qidong Wei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, SAR, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Recent advances in mixing-induced nanoprecipitation: from creating complex nanostructures to emerging applications beyond biomedicine. NANOSCALE 2023; 15:3594-3609. [PMID: 36727557 DOI: 10.1039/d3nr00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mixing-induced nanoprecipitation (MINP) is an efficient, controllable, scalable, versatile, and cost-effective technique for the preparation of nanoparticles. In addition to the formulation of drugs, MINP has attracted tremendous interest in other fields. In this review, we highlight recent advances in the preparation of nanoparticles with complex nanostructures via MINP and their emerging applications beyond biomedicine. First, the mechanisms of nanoprecipitation and four mixing approaches for MINP are briefly discussed. Next, three strategies for the preparation of nanoparticles with complex nanostructures including sequential nanoprecipitation, controlling phase separation, and incorporating inorganic nanoparticles, are summarized. Then, emerging applications including the engineering of catalytic nanomaterials, environmentally friendly photovoltaic inks, colloidal surfactants for the preparation of Pickering emulsions, and green templates for the synthesis of nanomaterials, are reviewed. Furthermore, we discuss the structure-function relationships to gain more insight into design principles for the development of functional nanoparticles via MINP. Finally, the remaining issues and future applications are discussed. This review will stimulate the development of nanoparticles with complex nanostructures and their broader applications beyond biomedicine.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
8
|
Zhao S, Lee L, Zhao Y, Liang NC, Chen YS. Photoacoustic signal enhancement in dual-contrast gastrin-releasing peptide receptor-targeted nanobubbles. Front Bioeng Biotechnol 2023; 11:1102651. [PMID: 36733960 PMCID: PMC9887164 DOI: 10.3389/fbioe.2023.1102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Translatable imaging agents are a crucial element of successful molecular imaging. Photoacoustic molecular imaging relies on optical absorbing materials to generate a sufficient signal. However, few materials approved for human use can generate adequate photoacoustic responses. Here we report a new nanoengineering approach to further improve photoacoustic response from biocompatible materials. Our study shows that when optical absorbers are incorporated into the shell of a gaseous nanobubble, their photoacoustic signal can be significantly enhanced compared to the original form. As an example, we constructed nanobubbles using biocompatible indocyanine green (ICG) and biodegradable poly(lactic-co-glycolic acid) (PLGA). We demonstrated that these ICG nanobubbles generate a strong ultrasound signal and almost four-fold photoacoustic signal compared to the same concentration of ICG solution; our theoretical calculations corroborate this effect and elucidate the origin of the photoacoustic enhancement. To demonstrate their molecular imaging performance, we conjugated gastrin-releasing peptide receptor (GRPR) targeting ligands with the ICG nanobubbles. Our dual photoacoustic/ultrasound molecular imaging shows a more than three-fold enhancement in targeting specificity of the GRPR-targeted ICG nanobubbles, compared to untargeted nanobubbles or prostate cancer cells not expressing GRPR, in a prostate cancer xenograft mouse model in vivo.
Collapse
Affiliation(s)
- Shensheng Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Leanne Lee
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Deng S, Li L, Zhang J, Wang Y, Huang Z, Chen H. Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. BIOSENSORS 2023; 13:bios13010137. [PMID: 36671972 PMCID: PMC9855952 DOI: 10.3390/bios13010137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/28/2023]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted much attention due to their excellent photophysical properties and applicability, such as large absorption cross section, high brightness, tunable fluorescence emission, excellent photostability, good biocompatibility, facile modification and regulation. Therefore, Pdots have been widely used in various types of sensing and imaging in biological medicine. More importantly, the recent development of Pdots for point-of-care biosensing and in vivo imaging has emerged as a promising class of optical diagnostic technologies for clinical applications. In this review, we briefly outline strategies for the preparation and modification of Pdots and summarize the recent progress in the development of Pdots-based optical probes for analytical detection and biomedical imaging. Finally, challenges and future developments of Pdots for biomedical applications are given.
Collapse
|
10
|
Li C, Jiang G, Yu J, Ji W, Liu L, Zhang P, Du J, Zhan C, Wang J, Tang BZ. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208229. [PMID: 36300808 DOI: 10.1002/adma.202208229] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Phototheranostics with second near-infrared (NIR-II) imaging and photothermal effect have become a burgeoning biotechnology for tumor diagnosis and precise treatment. As important parameters of phototheranostic agents (PTAs), fluorescence quantum yield (QY) and photothermal conversion efficiency (PCE) are usually considered as a pair of contradictions that is difficult to be simultaneously enhanced. Herein, a fluorination strategy for designing A-D-A type PTAs with synchronously improved QY and PCE is proposed. Experimental results show that the molar extinction coefficient (ε), NIR-II QY, and PCE of all fluorinated PTAs nanoparticles (NPs) are definitely improved compared with the chlorinated counterparts. Theoretical calculation results demonstrate that fluorination can maximize the electrostatic potential difference by virtue of the high electronegativity of fluorine, which may increase intra/intermolecular D-A interactions, tighten molecule packing, and further promote the increase of ε, ultimately leading to simultaneously enhanced QY and PCE. In these PTA NPs, FY6-NPs display NIR-II emission extended to 1400 nm with the highest NIR-II QY (4.2%) and PCE (80%). These features make FY6-NPs perform well in high-resolution imaging of vasculature and NIR-II imaging-guided photothermal therapy (PTT) of tumors. This study develops a valuable guideline for constructing NIR-II organic PTAs with high performance.
Collapse
Affiliation(s)
- Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, P. R. China
| | - Chuanlang Zhan
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education of Inner Mongolia Autonomous Region, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010022, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
11
|
Li W, Xin H, Zhang Y, Feng C, Li Q, Kong D, Sun Z, Xu Z, Xiao J, Tian G, Zhang G, Liu L. NIR-II Fluorescence Imaging-Guided Oxygen Self-Sufficient Nano-Platform for Precise Enhanced Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205647. [PMID: 36328734 DOI: 10.1002/smll.202205647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Tumor hypoxia and systemic toxicity seriously affect the efficacy of photodynamic therapy (PDT) and are considered as the "Achilles' heel" of PDT. Herein, to combat such limitations, an intelligent orthogonal emissions LDNP@SiO2 -CaO2 and folic acid-polyethylene glycol-Ce6 nanodrug is rationally designed and fabricated not only for relieving the hypoxic tumor microenvironment (TME) to enhance PDT efficacy, but also for determining the optimal triggering time through second near-infrared (NIR-II) fluorescence imaging. The designed nanodrug continuously releases a large amount of O2 , H2 O2 , and Ca2+ ions when exposed to the acidic TME. Meanwhile, under downshifting NIR-II bioimaging guidance, chlorine e6 (Ce6) consumes oxygen to produce 1 O2 upon excitation of upconversion photon. Moreover, cytotoxic reactive oxygen species (ROS) and calcium overload can induce mitochondria injury and thus enhance the oxidative stress in tumor cells. As a result, the NIR-II bioimaging guided TME-responsive oxygen self-sufficient PDT nanosystem presents enhanced anti-tumor efficacy without obvious systemic toxicity. Thus, the fabricated nanodrug offers great potential for designing an accurate cancer theranostic system.
Collapse
Affiliation(s)
- Wenling Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
- Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Huan Xin
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Ya'nan Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Chun Feng
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Qingdong Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Dexin Kong
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Zefeng Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Zhaowei Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
- Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jianmin Xiao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
- Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
- Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Lu Liu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
- Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai, 264003, P. R. China
| |
Collapse
|
12
|
Wang L, Jiang W, Su Y, Zhan M, Peng S, Liu H, Lu L. Self-Splittable Transcytosis Nanoraspberry for NIR-II Photo-Immunometabolic Cancer Therapy in Deep Tumor Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204067. [PMID: 36073839 PMCID: PMC9661837 DOI: 10.1002/advs.202204067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Indexed: 05/17/2023]
Abstract
Cancer photo-immunotherapy (CPIT) as an ideal strategy can rapidly release hostile signals by appropriate dosage of focal laser irradiation to unmask primary tumor immunogenicity and can activate adaptive immunity to control distant metastases. However, many factors, including disordered immunometabolism, poor penetration of photothermal agents and immuno-regulators, inadequate laser penetration into the deep tumor region, restrict the therapeutic outcomes of CPIT. Here, a second near-infrared window (NIR-II) photo-immunometabolic cancer therapy (PICT) by a programmed raspberry-structured nanoadjuvant (PRNMT ) is presented that can potentiates efficient immunogenic cell death (ICD) in deep tumor tissue and alleviates immunometabolic disorder. The PRNMT is architected through self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor modified small-sized CuS nanoparticles (CuS5 ) and tumor microenvironment (TME) responsive cationized polymeric matrix. The TME can trigger the splitting and surface cationization of PRNMT into small cationized CuS5 that feature high transcytosis potential and TME immunometabolic regulation. Upon NIR-II irradiation, CuS5 induce homogeneous ICD and release immunometabolic regulator in deep tumor tissues, which ameliorates IDO-1 mediated immunometabolic disorder and further suppresses regulatory T cells infiltration. PRNMT mediated PICT effectively delays the primary murine mammary carcinoma 4T1 tumor growth and inhibits the lethal pulmonary metastasis in combination with programmed cell death protein 1 (PD1) blockade.
Collapse
Affiliation(s)
- Li Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
- Department of RadiologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Wei Jiang
- Department of RadiologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Shaojun Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Hang Liu
- Department of RadiologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| |
Collapse
|
13
|
Tong S, Yu Z, Yin F, Yang Q, Chu J, Huang L, Gao W, Qian M. Manganese-based Prussian blue nanoparticles inhibit tumor proliferation and migration via the MAPK pathway in pancreatic cancer. Front Chem 2022; 10:1026924. [PMID: 36353142 PMCID: PMC9638070 DOI: 10.3389/fchem.2022.1026924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest gastrointestinal malignancies. Advances in molecular biology and surgery have significantly improved survival rates for other tumors in recent decades, but clinical outcomes for PC remained relatively unchanged. Chemodynamic therapy (CDT) and Photothermal therapy (PTT) represent an efficient and relatively safe cancer treatment modality. Here, we synthesized Mn-doped Prussian blue nanoparticles (MnPB NPs) through a simple and mild method, which have a high loading capacity for drugs and excellent CDT/PTT effect. Cell line experiments in vitro and animal experiments in vivo proved the safety of MnPB NPs. We stimulated the PC cells with MnPB NPs and performed transwell migration assays. The migration of PC cells was reduced company with the decrease of two classical proteins: matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Moreover, MnPB NPs induced ferroptosis, which mediated the MAPK pathway and achieved tumor elimination in nude mice. This effective and safe strategy controlled by irradiation represents a promising strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Shanshi Tong
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilong Yu
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing, China
| | - Fang Yin
- Shanghai Engineering Technology Research Center for the Functional Development of Human Intestinal Flora, Shanghai tenth People’s Hospital, Shanghai, China
| | - Qilin Yang
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
| | - Juhang Chu
- School of Medicine, Tongji University, Shanghai, China
| | - Luyao Huang
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
| | - Wenxue Gao
- Clinical Research Management Office, Shanghai tenth People’s Hospital, Shanghai, China
- *Correspondence: Wenxue Gao, ; Mingping Qian,
| | - Mingping Qian
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Wenxue Gao, ; Mingping Qian,
| |
Collapse
|
14
|
Highly efficient and non-doped red conjugated polymer dot for photostable cell imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Zhou W, Yin L, Zhang X, Liang T, Guo Z, Liu Y, Xie C, Fan Q. Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy. Front Bioeng Biotechnol 2022; 10:1002006. [PMID: 36246348 PMCID: PMC9556702 DOI: 10.3389/fbioe.2022.1002006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window has gained more and more attention in recent years and showed great potential in the field of bioimaging. Until now, numerous materials have been developed as contrast agents for NIR-II PA imaging. Among them, small molecule dyes hold unique advantages such as definite structures and capability of fast clearance from body. By virtue of these advantages, small molecule dyes-constructed nanoparticles have relatively small size and show promise in the clinical translation. Thus, in this minireview, we summarize recent advances in small molecule dyes-based nanotheranostics for NIR-II PA imaging and cancer therapy. Studies about NIR-II PA imaging-guided phototherapy are first introduced. Then, NIR-II PA imaging-guided phototherapy-based combination therapeutic systems are reviewed. Finally, the conclusion and perspectives of this field are summarized and discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Xie
- *Correspondence: Chen Xie, ; Quli Fan,
| | - Quli Fan
- *Correspondence: Chen Xie, ; Quli Fan,
| |
Collapse
|
16
|
Zhang X, Jiang K, Jiang S, Zhao F, Chen P, Huang P, Lin J. In Vivo Near-Infrared Fluorescence/Ratiometric Photoacoustic Duplex Imaging of Lung Cancer-Specific hNQO1. Anal Chem 2022; 94:13770-13776. [PMID: 36173742 DOI: 10.1021/acs.analchem.2c02153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpressing human NAD(P)H:quinone oxidoreductase 1 (hNQO1) in lung cancer tissues is deemed to be an attractive biomarker, which is directly connected to cancerous pathological processes. Monitoring of hNQO1 activity is crucial to early diagnosis and prognosis of lung cancer. In this study, an activatable hemi-cyanine dye-based probe (denoted as the LET-10 probe) was synthesized for near-infrared fluorescence (NIRF) and ratiometric photoacoustic (RPA) imaging of hNQO1. LET-10 can realize the NIRF and PA signal opening in the presence of hNQO1. Taking the octabutoxy naphthalocyanine in the LET-10 probe as a built-in reference signal, the LET-10 probe further demonstrated a double-signal self-calibration process for RPA imaging. Finally, the LET-10 probe was successfully applied for NIRF/RPA duplex imaging in the hNQO1-positive A549 lung cancer model, which suggests that the LET-10 probe is a promising tool for in vivo hNQO1 detection, especially for lung cancer diagnosis.
Collapse
Affiliation(s)
- Xinming Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Feng Zhao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Penghang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
17
|
Men X, Fang X, Liu Z, Zhang Z, Wu C, Chen H. Anisotropic assembly and fluorescence enhancement of conjugated polymer nanostructures. VIEW 2022. [DOI: 10.1002/viw.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Xiaoju Men
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation Changsha Medical University Changsha Hunan China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhihe Liu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhe Zhang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences Central South University Changsha Hunan China
| |
Collapse
|
18
|
Chang T, Qiu Q, Ji A, Qu C, Chen H, Cheng Z. Organic single molecule based nano-platform for NIR-II imaging and chemo-photothermal synergistic treatment of tumor. Biomaterials 2022; 287:121670. [PMID: 35835000 DOI: 10.1016/j.biomaterials.2022.121670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/20/2022]
Abstract
Integrating multiple functionalities of near-infrared second window fluorescence imaging (NIR-Ⅱ FLI), chemotherapy, and photothermal treatment (PTT) into a single molecule is desirable but still a highly challenging task. Herein, inspired by the results that hyperthermia can enhance the cytotoxicity of some alkylating agents, we designed and synthesized the novel compound NM. By introducing nitrogen mustard's active moiety bis(2-chlorethyl)amino into Donor-Acceptor-Donor (D-A-D) electronic structure, the unimolecular system not only behaviored as a chemotherapeutic agent but also exhibited good PTT and NIR-Ⅱ FLI abilities. The hydrophobic agent NM was encapsulated by DSPE-PEG2000 to generate the nano-platform NM-NPs. The current study on in vitro and in vivo experiments indicated that NM-NPs make vessels visualize clearly in the NIR-II zone and achieve complete tumor elimination through chemo-photothermal synergistic treatment. Overall, this study provides a new innovative strategy for developing superior, versatile phototheranostics for cancer theranostics.
Collapse
Affiliation(s)
- Tonghang Chang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qing Qiu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, China
| | - Aiyan Ji
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Hao Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
19
|
Synthesis of Donor–Acceptor Copolymers Derived from Diketopyrrolopyrrole and Fluorene via Eco-Friendly Direct Arylation: Nonlinear Optical Properties, Transient Absorption Spectroscopy, and Theoretical Modeling. ENERGIES 2022. [DOI: 10.3390/en15113855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of PFDPP copolymers based on fluorene (F) and diketopyrrolopyrrole (DPP) monomers were synthesized via direct arylation polycondensation using Fagnou conditions which involved palladium acetate as catalyst (a gradual catalyst addition of three different percentages were used), potassium carbonate as the base, and neodecanoic acid in N, N-dimethylacetamide. This synthesis provides a low cost compared with traditional methods of transition-metal-catalyzed polymerization. Among the different amounts of catalyst used in the present work, 12% was optimal because it gave the highest reaction yield (81.5%) and one of the highest molecular weights (Mn = 13.8 KDa). Copolymers’ chemical structures, molecular weight distributions, and optical and thermal properties were analyzed. The linear optical properties of PFDPP copolymers resulted very similarly independently to the catalyst amounts used in the synthesis of the PFDPP copolymers: two absorptions bands distinctive of donor–acceptor copolymers, Stokes shifts of 41 nm, a good quantum yield of fluorescence around 47%, and an optical bandgap of 1.7 eV were determined. Electronic nonlinearities were observed in these copolymers with a relatively high two-photon absorption cross-section of 621 GM at 950 nm. The dynamics of excited states and aggregation effects were studied in solutions, nanoparticles, and films of PFDPP. Theoretical calculations modeled the ground-state structures of the (PFDPP)n copolymers with n = 1 to 4 units, determining the charge distribution by the electrostatic potential and modeling the absorption spectra determining the orbital transitions responsible for the experimentally observed leading bands. Experimental and theoretical structure–properties analysis of these donor–acceptor copolymers allowed finding their best synthesis conditions to use them in optoelectronic applications.
Collapse
|
20
|
Zhu J, Zhu R, Miao Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens Bioelectron 2022; 210:114330. [PMID: 35567882 DOI: 10.1016/j.bios.2022.114330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Numerous polymeric agents have been widely applied in biology and medicine by virtue of the facile chemical modification, feasible nano-engineering approaches and fine-tuned pharmacokinetics. To endow polymeric imaging agents with ability to monitor and measure subtle molecular or cellular alterations at diseased sites, activatable polymeric probes that can elicit signal changes in response to biomolecular interactions or the analytes of interest have to be developed. Herein, this review aims to provide a systemic interpretation and summarization of the design methodology and imaging utility of recently emerged activatable polymeric probes. An introduction of activatable probes allowing for precise imaging and classification of polymeric imaging agents is reported first. Then, we give a detailed discussion of the contemporary design approaches toward activatable polymeric probes in diverse imaging modes for the detection of various stimuli and their imaging applications. Finally, current challenges and future advances are discussed and highlighted.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
21
|
Chen A, Wu L, Luo Y, Lu S, Wang Y, Zhou Z, Zhou D, Xie Z, Yue J. Deep Tumor Penetrating Gold Nano-Adjuvant for NIR-II-Triggered In Situ Tumor Vaccination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200993. [PMID: 35451111 DOI: 10.1002/smll.202200993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Local tumor photothermal treatment with the near-infrared light at the second window (NIR-II) is a promising strategy in triggering the in situ tumor vaccination (ISTV) for cancer therapy. However, limited penetration of photothermal agents within tumors seriously limits their spatial effect in generating sufficient tumor-associated antigens, a key factor to the success of ISTV. In this study, a nano-adjuvant system is fabricated based on the NIR-II-absorbable gold nanostars decorated with hyaluronidases and immunostimulatory oligodeoxynucleotides CpG for ISTV. The nano-adjuvant displays a deep tumor penetration capacity via loosening the dense extracellular matrix of tumors. Upon NIR-II light irradiation, the nano-adjuvant significantly inhibits the tumor growth, induces a cascade of immune responses, generates an obvious adaptive immunity against the re-challenged cancers, boosts the abscopal effect, and completely inhibits the pulmonary metastases. The study highlights an advanced nano-adjuvant formulation featuring deep tumor penetration for NIR-II-triggered ISTV.
Collapse
Affiliation(s)
- Anhong Chen
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Lei Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Yao Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jun Yue
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| |
Collapse
|
22
|
Ni X, Shi W, Liu Y, Yin L, Guo Z, Zhou W, Fan Q. Capsaicin-Decorated Semiconducting Polymer Nanoparticles for Light-Controlled Calcium-Overload/Photodynamic Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200152. [PMID: 35398988 DOI: 10.1002/smll.202200152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1 O2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy.
Collapse
Affiliation(s)
- Xiaoyue Ni
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wenheng Shi
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yaxin Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Likun Yin
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zixin Guo
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
23
|
Zhou W, He X, Wang J, He S, Xie C, Fan Q, Pu K. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation. Biomacromolecules 2022; 23:1490-1504. [PMID: 35286085 DOI: 10.1021/acs.biomac.2c00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy that stimulates the body's own immune system to kill cancer cells has emerged as a promising cancer therapeutic method. However, some types of cancer exhibited a low response rate to immunotherapy, and the high risk of immune-related side effects has been aroused during immunotherapy, which greatly restrict its broad applications in cancer therapy. Phototherapy that uses external light to trigger the therapeutic process holds advantages including high selectivity and efficiency, and low side effects. Recently, it has been proven to be able to stimulate immune response in the tumor region by inducing immunogenic cell death (ICD), the process of which was termed photo-immunotherapy, dramatically improving therapeutic specificity over conventional immunotherapy in several aspects. Among numerous optical materials for photo-immunotherapy, semiconducting polymer nanoparticles (SPNs) have gained more and more attention owing to their excellent optical properties and good biocompatibility. In this review, we summarize recent developments of SPNs for immunotherapy and imaging of immunoactivation. Different therapeutic modalities triggered by SPNs including photo-immunotherapy and photo-immunometabolic therapy are first introduced. Then, applications of SPNs for real-time monitoring immunoactivation are discussed. Finally, the conclusion and future perspectives of this research field are given.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinghui Wang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
24
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light-Harvesting Fluorescent Spherical Nucleic Acids Self-Assembled from a DNA-Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202115812. [PMID: 35064628 DOI: 10.1002/anie.202115812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 01/07/2023]
Abstract
The ultralow concentration of nucleic acids in complex biological samples requires fluorescence probes with high specificity and sensitivity. Herein, a new kind of spherical nucleic acids (SNAs) is developed by using fluorescent π-conjugated polymers (FCPs) as a light-harvesting antenna to enhance the signal transduction of nucleic acid detection. Specifically, amphiphilic DNA-grafted FCPs are synthesized and self-assemble into FCP-SNA structures. Tuning the hydrophobicity of the graft copolymer can adjust the size and light-harvesting capability of the FCP-SNAs. We observe that more efficient signal amplification occurs in larger FCP-SNAs, as more chromophores are involved, and the energy transfer can go beyond the Förster radius. Accordingly, the optimized FCP-SNA shows an antenna effect of up to 37-fold signal amplification and the limit of detection down to 1.7 pM in microRNA detection. Consequently, the FCP-SNA is applied to amplified in situ nucleic acid detecting and imaging at the single-cell level.
Collapse
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin, 150001, Heilongjiang, P. R. China.,Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hanbing Xue
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yulin Zhu
- Department of Chemistry, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yan Zhao
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
25
|
Qiu Z, Zhang C, Zhang L, Wang S, Hu S, Zhao S. Precise in Vivo Inflammation Imaging in the NIR-II Window Using 1065 nm Photoacoustic Probe for in Situ Visual Monitoring of Pathological Processes Related to Hepatitis. ACS Sens 2022; 7:641-648. [PMID: 35175041 DOI: 10.1021/acssensors.1c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between light and biological tissues in the second near-infrared (NIR-II) window is weak, which can effectively reduce the scattering and absorption of incoming light by biological tissues and enhance the resolution and sensing ability of in vivo photoacoustic (PA) imaging. In particular, tissues that carry blood and water produce the lowest PA background in the wavelength range of 1050 to 1150 nm. However, the development of the NIR-II PA probe for the above window faces great challenges. To tackle this challenge, the reduction-reoxidation of an organic dye was used to develop a PA imaging probe (Hydro-1048) as the first NIR-II PA probe of a hydroxy radical (·OH) for molecular imaging in deep tissue. The ·OH oxidized the C-N single bond in Hydro-1048 to double bonds, which formed Et-1065. This conversion extended the conjugate system of the molecule and shifted the absorption peak from 520 to 1065 nm, which resulted in a strong PA signal after irradiation with a 1065 nm laser. At a detection limit of 0.6 nM, a good linear relationship within the range of 5-1000 nM was obtained for the PA signal intensity versus the concentration of ·OH. The developed NIR-II PA probe can be used for the noninvasive high-resolution imaging of ·OH in deep tissue, and the PA imaging of ·OH can also be used to visually monitor in situ pathological processes related to hepatitis.
Collapse
Affiliation(s)
- Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
26
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light‐Harvesting Fluorescent Spherical Nucleic Acids Self‐Assembled from a DNA‐Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering Harbin Institute of Technology, Nangang District Harbin 150001 Heilongjiang P. R. China
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hanbing Xue
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yulin Zhu
- Department of Chemistry Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Li Lin
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yan Zhao
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
27
|
Tan Y, Liu P, Li D, Wang D, Tang BZ. NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. BIOSENSORS 2022; 12:46. [PMID: 35049674 PMCID: PMC8774032 DOI: 10.3390/bios12010046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 05/23/2023]
Abstract
As an emerging and powerful material, aggregation-induced emission luminogens (AIEgens), which could simultaneously provide a precise diagnosis and efficient therapeutics, have exhibited significant superiorities in the field of phototheranostics. Of particular interest is phototheranostics based on AIEgens with the emission in the range of second near-infrared (NIR-II) range (1000-1700 nm), which has promoted the feasibility of their clinical applications by virtue of numerous preponderances benefiting from the extremely long wavelength. In this minireview, we summarize the latest advances in the field of phototheranostics based on NIR-II AIEgens during the past 3 years, including the strategies of constructing NIR-II AIEgens and their applications in different theranostic modalities (FLI-guided PTT, PAI-guided PTT, and multimodal imaging-guided PDT-PTT synergistic therapy); in addition, a brief conclusion of perspectives and challenges in the field of phototheranostics is given at the end.
Collapse
Affiliation(s)
- Yonghong Tan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Danxia Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
28
|
Wang W, Zhang X, Ni X, Zhou W, Xie C, Huang W, Fan Q. Semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photothermal/thermodynamic combination therapy. Biomater Sci 2022; 10:846-853. [PMID: 35006217 DOI: 10.1039/d1bm01646f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photothermal therapy is a promising phototherapeutic modality that has been widely studied in cancer therapy. However, because of the influence of heat shock protein (HSP), the therapeutic efficacy of photothermal therapy (PTT) is significantly suppressed. To improve the therapeutic efficacy, different tumor-specific therapeutic modalities have been chosen to combine with PTT. However, most of them rely on endogenous stimuli to trigger combination therapy, which may suffer from the issue of incomplete activation. Herein, we develop a PTT/thermodynamic combination therapeutic nanosystem whose therapeutic process is controlled by an external stimulus, near-infrared (NIR) light. The nanosystem (ADPPTN) is composed of a second NIR (NIR-II) fluorescent semiconducting polymer (SP) (DPPT) as the core, and a carboxyl group-decorated amphiphilic copolymer (PSMA-PEG) as the shell with an azo-containing compound (AIPH) loaded via electrostatic interaction. Under 808 nm laser irradiation, DPPT can generate heat to conduct PTT, while the elevated temperature may further trigger the release of AIPH radicals, conducting thermodynamic therapy (TDT). In addition, the NIR-II fluorescence signal emitted from DPPT can light the tumor. Compared with the nanoparticles without AIPH (DPPTN), ADPPTN has better anticancer efficacy under laser irradiation both in vitro and in vivo. Thus, our study provides an NIR-II fluorescence imaging-guided PTT/TDT combination therapeutic nanosystem for efficient cancer theranostics.
Collapse
Affiliation(s)
- Wenqi Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Xi Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Xiaoyue Ni
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
29
|
Wang W, He X, Du M, Xie C, Zhou W, Huang W, Fan Q. Organic Fluorophores for 1064 nm Excited NIR-II Fluorescence Imaging. Front Chem 2021; 9:769655. [PMID: 34869217 PMCID: PMC8634436 DOI: 10.3389/fchem.2021.769655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
Second near-infrared window (NIR-II) fluorescence imaging has shown great potential in the field of bioimaging. However, the excitation wavelengths of most NIR-II fluorescence dyes are in the first near-infrared (NIR-I) region, which leads to limited imaging depth and resolution. To address such issue, NIR-II fluorescence dyes with 1,064 nm excitation have been developed and applied for in vivo imaging. Compared with NIR-I wavelength excited dyes, 1,064 nm excited dyes exhibit a higher tissue penetration depth and resolution. The improved performance makes these dyes have much broader imaging applications. In this mini review, we summarize recent advances in 1,064 nm excited NIR-II fluorescence fluorophores for bioimaging. Two kinds of organic fluorophores, small molecule dye and semiconducting polymer (SP), are reviewed. The general properties of these fluorophores are first introduced. Small molecule dyes with different chemical structures for variety of bioimaging applications are then discussed, followed by the introduction of SPs for NIR-II phototheranostics. Finally, the conclusion and future perspective of this field is given.
Collapse
Affiliation(s)
- Wenqi Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Mingzhi Du
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
30
|
Gu X, Liao K, Lu X, Huang W, Fan Q. Thiadiazoloquinoxaline-Based Semiconducting Polymer Nanoparticles for NIR-II Fluorescence Imaging-Guided Photothermal Therapy. Front Bioeng Biotechnol 2021; 9:780993. [PMID: 34805127 PMCID: PMC8595102 DOI: 10.3389/fbioe.2021.780993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Phototheranostics have gained more and more attention in the field of cancer diagnosis and therapy. Among a variety of fluorophores for phototheranostics, semiconducting polymer nanoparticles (SPNs), which are usually constructed by encapsulating hydrophobic semiconducting polymers (SPs) with amphiphilic copolymers, have shown great promise. As second near-infrared (NIR-II) fluorescence imaging has both higher imaging resolution and deeper tissue penetration compared with first near-infrared (NIR-I) fluorescence imaging, NIR-II fluorescent SPNs have been widely designed and prepared. Among numerous structural units for semiconducting polymers (SPs) synthesis, thiadiazoloquinoxaline (TQ) has been proved as an efficient electron acceptor unit for constructing NIR-II fluorescent SPs by reacting with proper electron donor units. Herein, we summarize recent advances in TQ-based SPNs for NIR-II fluorescence imaging-guided cancer photothermal therapy. The preparation of TQ-based SPNs is first described. NIR-II fluorescence imaging-based and multimodal imaging-based phototheranostics are sequentially discussed. At last, the conclusion and future perspectives of this field are presented.
Collapse
Affiliation(s)
- Xuxuan Gu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China.,State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Keyue Liao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China.,State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wei Huang
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University, Xi'an, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
31
|
Li J, Ou H, Li J, Yang X, Ge C, Ding D, Gao X. Large π-extended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1090-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Bindra AK, Wang D, Zheng Z, Jana D, Zhou W, Yan S, Wu H, Zheng Y, Zhao Y. Self-assembled semiconducting polymer based hybrid nanoagents for synergistic tumor treatment. Biomaterials 2021; 279:121188. [PMID: 34678649 DOI: 10.1016/j.biomaterials.2021.121188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is an impending need for the development of carrier-free nanosystems for single laser triggered activation of phototherapy, as such approach can overcome the drawbacks associated with irradiation by two distinct laser sources for avoiding prolonged treatment time and complex treatment protocols. Herein, we developed a self-assembled nanosystem (SCP-CS) consisting of a new semiconducting polymer (SCP) and encapsulated ultrasmall CuS (CS) nanoparticles. The SCP component displays remarkable near infrared (NIR) induced photothermal ability, enhanced reactive oxygen species (ROS) generation, and incredible photoacoustic (PA) signals upon activation by 808 nm laser for phototherapy mediated cancer ablation. The CuS component improves the PA imaging ability of SCP-CS, and also enhances photo-induced chemodynamic efficacy. Attributed to promoted single laser-triggered hyperthermia and enhanced ROS generation, the SCP-CS nanosystem shows effective intracellular uptake and intratumoral accumulation, enhanced tumor suppression with reduced treatment time, and devoid of any noticeable toxicity.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Suxia Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
33
|
He K, Chen S, Xu W, Tai X, Chen Y, Sun P, Fan Q, Huang W. High-stability NIR-II fluorescence polymer synthesized by atom transfer radical polymerization for application in high-resolution NIR-II imaging. Biomater Sci 2021; 9:6434-6443. [PMID: 34582525 DOI: 10.1039/d1bm01074c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared II (NIR-II, 1000-1700 nm) fluorescent imaging (FI) has been reported to achieve optical images with higher resolution and deeper penetration. Among the organic NIR-II small molecules, donor-acceptor-donor (D-A-D) type fluorescent agents have shown superior photophysical and biocompatible properties for FI applications but have ongoing limitations, such as the difficulty in further modifying them with drug-carrying functional groups or prodrugs. In this work, three D-A-D type NIR-II fluorophores with electron acceptors of 4,8-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-1H,3H-benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (BBT), 6,7-bis(4-(hexyloxy)phenyl)-4,9-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (TTQ) and 4,6-bis(5-bromo-2-thienyl)thieno[3,4-c][1,2,5]thiadiazole (TTDT) have been successfully prepared. Their optical and imaging properties and stability were investigated via theoretical and experimental studies. The results demonstrated that TTDT-SF exhibited good NIR-II imaging ability. Importantly, TTDT-SF showed outstanding stability in an alkaline and redox environment. Subsequently, a stable atom transfer radical polymerization (ATRP) initiator, based on TTDT and its derivative water-soluble fluorescent polymer TTDT-TF-POEGMA, synthesized through ATRP, was successfully fabricated. It was demonstrated that TTDT-TF-POEGMA exhibited excellent fluorescence ability, great water solubility, effective light stability and great potential in tumor FI and image-guided surgery. In a word, this work has developed a new stable initiator with NIR-II fluorescent properties, which provides a platform for the development of water-soluble and multifunctional NIR-II fluorescent polymers for a broad range of applications.
Collapse
Affiliation(s)
- Kun He
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Shangyu Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Wenjuan Xu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Xiaoyan Tai
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Yan Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
34
|
Sun R, Chen H, Sutrisno L, Kawazoe N, Chen G. Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:404-428. [PMID: 34121928 PMCID: PMC8183558 DOI: 10.1080/14686996.2021.1924044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 05/03/2023]
Abstract
Photothermal therapy (PTT) has attracted broad attention as a promising method for cancer therapy with less severe side effects than conventional radiation therapy, chemotherapy and surgical resection. PTT relies on the photoconversion capacity of photothermal agents (PTAs), and a wide variety of nanomaterials have been employed as PTAs for cancer therapy due to their excellent photothermal properties. The PTAs are systematically or locally administered and become enriched in cancer cells to increase ablation efficiency. In recent years, PTAs and three-dimensional scaffolds have been hybridized to realize the local delivery of PTAs for the repeated ablation of cancer cells. Meanwhile, the composite scaffolds can stimulate the reconstruction and regeneration of the functional tissues and organs after ablation of cancer cells. A variety of composite scaffolds of photothermal nanomaterials have been prepared to combine the advantages of different modalities to maximize their therapeutic efficacy with minimal side effects. The synergistic effects make the composite scaffolds attractive for biomedical applications. This review summarizes these latest advances and discusses the future prospects.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Linawati Sutrisno
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Kang T, Ni JS, Li T, Wang J, Li Z, Li Y, Zha M, Zhang C, Wu X, Guo H, Xi L, Li K. Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers. Biomaterials 2021; 275:120907. [PMID: 34090050 DOI: 10.1016/j.biomaterials.2021.120907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
One major challenge in miRNA-based therapy is to explore facile delivery strategies, which can facilitate the efficient and precise accumulation of intrinsically instable microRNAs (miRNAs) at targeted tumor sites. To address this critical issue, for the first time we demonstrate that a near-infrared (NIR) pulse laser can guide efficient delivery of miRNAs mediated by a NIR-absorbing and photoacoustic active semiconducting polymer (SP) nanocarrier, which can generate photoacoustic radiation force to intravascularly overcome the endothelial barriers. Importantly, we demonstrate an ultrafast delivery of miRNA (miR-7) to tumor tissues under the irradiation of pulse laser in 20 min, showing a 5-fold boosted efficiency in comparison to the traditional passive targeting strategy. The delivered miR-7 acts as a sensitizer of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and synergizes with TRAIL-inducing compound (TIC), leading to sustained TRAIL upregulation for effective tumor suppression in mice. As such, our results indicate that the NIR-absorbing semiconducting polymer-mediated nanocarrier platform can significantly enhance the targeted delivery efficiency of therapeutic miRNAs to tumors, resulting in potent tumor growth inhibition.
Collapse
Affiliation(s)
- Tianyi Kang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jen-Shyang Ni
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Tingting Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jun Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zeshun Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Chen Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xue Wu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Heng Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Lei Xi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
36
|
Gao Z, Li C, Shen J, Ding D. Organic optical agents for image-guided combined cancer therapy. Biomed Mater 2021; 16. [PMID: 33873169 DOI: 10.1088/1748-605x/abf980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
As a promising non-invasive treatment method, phototherapy has attracted extensive attention in the field of combined cancer therapy. Among various optical agents, organic ones have been considered as a promising clinical phototheranostic agent due to its high safety and non-toxic property. In addition, due to the clear structure, facile processability, organic optical agents can be easily endowed with multiple imaging and phototherapeutic functions, significantly simplifying the relatively complex system of imaging-guided combined cancer therapy. This review summarizes the recent research on organic optical agents in imaging-guided combined cancer therapy. The application of organic optical agents in a variety of combined cancer therapeutic modes guided by imaging are introduced respectively, including photodynamic and photothermal combined therapy, phototherapy-combined cancer chemotherapy, and phototherapy-combined cancer immunotherapy. Finally, the concluding remarks and the future prospects are discussed.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Dan Ding
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
37
|
Yang RQ, Lou KL, Wang PY, Gao YY, Zhang YQ, Chen M, Huang WH, Zhang GJ. Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. SMALL METHODS 2021; 5:e2001066. [PMID: 34927825 DOI: 10.1002/smtd.202001066] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/30/2020] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) fluorescence imaging is an emerging noninvasive imaging modality, with unique advantages in guiding tumor resection surgery, thanks to its high sensitivity and instantaneity. In the past decade, studies on the conventional NIR window (NIR-I, 750-900 nm) have gradually focused on the second NIR window (NIR-II, 1000-1700 nm). With its reduced light scattering, photon absorption, and auto-fluorescence qualities, NIR-II fluorescence imaging significantly improves penetration depths and signal-to-noise ratios in bio-imaging. Recently, several studies have applied NIR-II imaging to navigating cancer surgery, including localizing cancers, assessing surgical margins, tracing lymph nodes, and mapping important anatomical structures. These studies have exemplified the significant prospects of this new approach. In this review, several NIR-II fluorescence agents and some of the complex applications for guiding cancer surgeries are summarized. Future prospects and the challenges of clinical translation are also discussed.
Collapse
Affiliation(s)
- Rui-Qin Yang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Kang-Liang Lou
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Pei-Yuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350000, China
| | - Yi-Yang Gao
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Yong-Qu Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Min Chen
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Wen-He Huang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Guo-Jun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
38
|
Lv Z, He S, Wang Y, Zhu X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv Healthc Mater 2021; 10:e2001806. [PMID: 33470542 DOI: 10.1002/adhm.202001806] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Indexed: 12/24/2022]
Abstract
It is of great significance to develop anticancer therapeutic agents or technologies with high degree of specificity and patient compliance, while low toxicity. The emerging photothermal therapy (PTT) has become a new and powerful therapeutic technology due to its noninvasiveness, high specificity, low side effects to normal tissues and strong anticancer efficacy. Noble metal nanomaterials possess strong surface plasmon resonance (SPR) effect and synthetic tunability, which make them facile and effective PTT agents with superior optical and photothermal characteristics, such as high absorption cross-section, incomparable optical-thermal conversion efficiency in the near infrared (NIR) region, as well as the potential of bioimaging. By incorporating with various functional reagents such as antibodies, peptides, biocompatible polymers, chemo-drug and immune factors, noble metal nanomaterials have presented strong potential in multifunctional cancer therapy. Herein, the recent development regarding the application of noble metal nanomaterials for NIR-triggered PTT in cancer treatment is summarized. A variety of studies with good therapeutic effects against cancer from impressive photothermal efficacy of noble metal nanomaterials are concluded. Intelligent nanoplatforms through ingenious fabrication showing potential of multifunctional PTT, combined with chemo-therapy, immunotherapy, photodynamic therapy (PDT), as well as simultaneous imaging modality are also demonstrated.
Collapse
Affiliation(s)
- Zhuoqian Lv
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sijia He
- Cancer Center Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 650 Xinsongjiang Road Shanghai 201620 China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
39
|
Zhen X, Pu K, Jiang X. Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004723. [PMID: 33448155 DOI: 10.1002/smll.202004723] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Photoacoustic (PA) imaging and photothermal therapy (PTT) have attracted extensive attention in disease diagnosis and treatment. Although many exogenous contrast agents have been developed for PA imaging and PTT, the design guidelines to amplify their imaging and therapy performances remain challenging and are highly demanded. Semiconducting polymer nanoparticles (SPNs) composed of polymers with π-electron delocalized backbones can be designed to amplify their PA imaging and PTT performance, because of their clear structure-property relation and versatility in modifying their molecular structures to tune their photophysical properties. This review summarizes the recent advances in the photoacoustic imaging and photothermal therapy applications of semiconducting polymer nanoparticles with a focus on signal amplification and second near-infrared (NIR-II, 1000-1700 nm) construction. The strategies such as structure-property screening, fluorescence quenching, accelerated heat dissipation, and size-dependent heat dissipation are first discussed to amplify the PA brightness of SPNs for in vivo PA. The molecular approaches to shifting the absorption of SPNs for NIR-II PA imaging and PTT are then introduced so as to improve the tissue penetration depth for diagnosis and therapy. At last, current challenges and perspectives of SPNs in the field of imaging and therapy are discussed.
Collapse
Affiliation(s)
- Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
40
|
Gupta N, Chan YH, Saha S, Liu MH. Near-Infrared-II Semiconducting Polymer Dots for Deep-tissue Fluorescence Imaging. Chem Asian J 2021; 16:175-184. [PMID: 33331122 DOI: 10.1002/asia.202001348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Fluorescence imaging, particularly in the NIR-II region (1000-1700 nm), has become an unprecedented tool for deep-tissue in vivo imaging. Among the fluorescent nanoprobes, semiconducting polymer nanoparticles (Pdots) appear to be a promising agent because of their tunable optical and photophysical properties, ultrahigh brightness, minimal autofluorescence, narrow-size distribution, and low cytotoxicity. This review elucidates the recent advances in Pdots for deep-tissue fluorescence imaging and the facing future translation to clinical use.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, Centre of Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, 30010, Hsinchu City, Taiwan
| |
Collapse
|
41
|
Feng J, Gao JL, Zhang RY, Ren WX, Dong YB. Polydopamine-Based Multifunctional Antitumor Nanoagent for Phototherapy and Photodiagnosis by Regulating Redox Balance. ACS APPLIED BIO MATERIALS 2020; 3:8667-8675. [PMID: 35019637 DOI: 10.1021/acsabm.0c01057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development of multifunctional nanoagents for the simultaneous achievement of high diagnostic and therapeutic performances is significant for precise cancer treatment. Herein, we report on a polydopamine (PDA)-based multifunctional nanoagent, PML, in which the methylene blue (MB) photosensitizer (PS) and l-arginine (l-Arg) tumor-targeting species are equipped. After selectively accumulating in tumor sites, glutathione (GSH)-responsive PML degradation can controllably release loaded MB to produce singlet oxygen (1O2) under near-infrared (NIR) photoirradiation. This GSH-depleted PS release process can not only weaken the body's antioxidant defence ability but also synergistically increase the 1O2 concentration. Therefore, GSH depletion-enhanced photodynamic therapy (PDT) efficiency is logically achieved by regulating the intracellular redox balance. In addition, our nanoagent can guide photoacoustic/NIR thermal dual-modal imaging and convert light into heat for cooperative cancer phototherapy because of the inherent photothermal conversion nature of PDA. As a result, excellent in vivo antitumor phototherapy (PDT + PTT) is achieved under the precise guidance of dual-modal imaging. This work not only realizes the integration of cancer diagnosis and treatment through PDA-based nanocarriers but also delivers dimensions in designing the next generation of multifunctional antitumor nanoagents for enhanced phototherapy and photodiagnosis by regulating the redox balance.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jia-Lin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruo-Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Xiu Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|