1
|
Li J, Ott S. The Molecular Nature of Redox-Conductive Metal-Organic Frameworks. Acc Chem Res 2024; 57:2836-2846. [PMID: 39288193 PMCID: PMC11447836 DOI: 10.1021/acs.accounts.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
ConspectusRedox-conductive metal-organic frameworks (RC-MOFs) are a class of porous materials that exhibit electrical conductivity through a chain of self-exchange reactions between molecularly defined, neighboring redox-active units of differing oxidation states. To maintain electroneutrality, this electron hopping transport is coupled to the translocation of charge balancing counterions. Owing to the molecular nature of the redox active components, RC-MOFs have received increasing attention for potential applications in energy storage, electrocatalysis, reconfigurable electronics, etc. While our understanding of fundamental aspects that govern electron hopping transport in RC-MOFs has improved during the past decade, certain fundamental aspects such as questions that arise from the coupling between electron hopping and diffusion migration of charge balancing counterions are still not fully understood.In this Account, we summarize and discuss our group's efforts to answer some of these fundamental questions while also demonstrating the applicability of RC-MOFs in energy-related applications. First, we introduce general design strategies for RC-MOFs, fundamentals that govern their charge transport properties, and experimental diagnostics that allow for their identification. Selected examples with redox-active organic linkers or metallo-linkers are discussed to demonstrate how the molecular characteristics of the redox-active units inside RC-MOFs are retained. Second, we summarize experimental techniques that can be used to characterize charge transport properties in a RC-MOF. The apparent electron diffusion coefficient, Deapp, that is frequently determined in the field and obtained in large perturbation, transient experiments will be discussed and related to redox conductivity, σ, that is obtained in a steady state setup. It will be shown that both MOF-intrinsic (topology, pore size, and apertures) and experimental (nature of electrolyte, solvent) factors can have noticeable impact on electrical conductivity through RC-MOFs. Lastly, we summarize our progress in utilizing RC-MOFs as electrochromic materials, materials for harvesting minority carriers from illuminated semiconductors and within electrocatalysis. In the latter case, recent work on multivariate RC-MOFs in which redox active linkers are used to "wire" redox catalysts in the crystal interiors will be presented, offering opportunities to independently optimize charge transport and catalytic function.The ambition of this Account is to inspire the design of new RC-MOF systems, to aid their identification, to provide mechanistic insights into the governing ion-coupled electron hopping transport mode of conductivity, and ultimately to promote their applications in existing and emerging areas. With basically unlimited possibilities of molecular engineering tools, together with research in both fundamental and applied fields, we believe that RC-MOFs will attract even more attention in the future to unlock their full potential.
Collapse
Affiliation(s)
- Jingguo Li
- Wallenberg Initiative Materials
Science for Sustainability, Department of Chemistry, Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Wallenberg Initiative Materials
Science for Sustainability, Department of Chemistry, Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
2
|
Liu D, Ma H, Zhu C, Qiu F, Yu W, Ma LL, Wei XW, Han YF, Yuan G. Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:2275-2285. [PMID: 38215226 DOI: 10.1021/jacs.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The construction of structurally well-defined supramolecular hosts to accommodate catalytically active species within a cavity is a promising way to address catalyst deactivation. The resulting supramolecular catalysts can significantly improve the utilization of catalytic sites, thereby achieving a highly efficient chemical conversion. In this study, the Co-metalated phthalocyanine (Pc-Co) was successfully confined within a tetragonal prismatic metallacage, leading to the formation of a distinctive type of supramolecular photocatalyst (Pc-Co@Cage). The host-guest architecture of Pc-Co@Cage was unambiguously elucidated by single-crystal X-ray diffraction (SCXRD), NMR, and ESI-TOF-MS, revealing that the single cobalt active site can be thoroughly isolated within the space-restricted microenvironment. In addition, we found that Pc-Co@Cage can serve as a homogeneous supramolecular photocatalyst that displays high CO2 to CO conversion in aqueous media under visible light irradiation. This supramolecular photocatalyst exhibits an obvious improvement in activity (TONCO = 4175) and selectivity (SelCO = 92%) relative to the nonconfined Pc-Co catalyst (TONCO = 500, SelCO = 54%). The present strategy provided a rare example for the construction of a highly active, selective, and stable photocatalyst for CO2 reduction through a cavity-confined molecular catalyst within a discrete metallacage.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Huirong Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Chao Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Fengyi Qiu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Weibin Yu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Li-Li Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Xian-Wen Wei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| |
Collapse
|
3
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
4
|
Iliescu A, Oppenheim JJ, Sun C, Dincǎ M. Conceptual and Practical Aspects of Metal-Organic Frameworks for Solid-Gas Reactions. Chem Rev 2023; 123:6197-6232. [PMID: 36802581 DOI: 10.1021/acs.chemrev.2c00537] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The presence of site-isolated and well-defined metal sites has enabled the use of metal-organic frameworks (MOFs) as catalysts that can be rationally modulated. Because MOFs can be addressed and manipulated through molecular synthetic pathways, they are chemically similar to molecular catalysts. They are, nevertheless, solid-state materials and therefore can be thought of as privileged solid molecular catalysts that excel in applications involving gas-phase reactions. This contrasts with homogeneous catalysts, which are overwhelmingly used in the solution phase. Herein, we review theories dictating gas phase reactivity within porous solids and discuss key catalytic gas-solid reactions. We further treat theoretical aspects of diffusion within confined pores, the enrichment of adsorbates, the types of solvation spheres that a MOF might impart on adsorbates, definitions of acidity/basicity in the absence of solvent, the stabilization of reactive intermediates, and the generation and characterization of defect sites. The key catalytic reactions we discuss broadly include reductive reactions (olefin hydrogenation, semihydrogenation, and selective catalytic reduction), oxidative reactions (oxygenation of hydrocarbons, oxidative dehydrogenation, and carbon monoxide oxidation), and C-C bond forming reactions (olefin dimerization/polymerization, isomerization, and carbonylation reactions).
Collapse
Affiliation(s)
- Andrei Iliescu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Hilliard JS, Wade CR. Facile immobilization of P NN NP-Pd pincer complexes in MFU-4 l-OH and the effects of guest loading on Lewis acid catalytic activity. Dalton Trans 2023; 52:1608-1615. [PMID: 36645392 DOI: 10.1039/d2dt03781e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A palladium diphosphine pincer complex H3(PNNNP-PdI) has been encapsulated in the benzotriazolate metal-organic framework MFU-4l-OH ([Zn5(OH)4(btdd)3], btdd2- = bis(1,2,3-triazolo)dibenzodioxin), and the resulting materials were investigated as Lewis acid catalysts for cyclization of citronellal to isopulegol. Rapid catalyst immobilization is facilitated by a Brønsted acid-base reaction between the H3(PNNNP-PdI) benzoic acid substituents and Zn-OH groups at the framework nodes. Catalyst loading can be controlled up to a maximum of 0.5 pincer complexes per formula unit [PdI-x, Zn5(OH)4-nx(btdd)3(H3-nPNNNP-PdI)xx = 0.06-0.5, n ≈ 2.75]. Oxidative ligand exchange was used to replace I- with weakly coordinating BF4- anions at the Pd-I sites, generating the activated PdBF4-x catalysts (x = 0.06, 0.10, 0.18, 0.40). The Lewis acid catalytic activity of the PdBF4-x series decreases with increasing catalyst density as a result of the appearance of mass transport limitations. Initial catalytic rates show that the activity of PdBF4-0.06 approaches the intrinsic activity of a homogeneous PNNNP-PdBF4 catalyst analogue. In addition, PdBF4-0.06 exhibits better catalytic activity than the metallolinker-based MOF Zr-PdBF4 and was not subject to leaching or catalyst degradation processes observed for the homogeneous analogue.
Collapse
Affiliation(s)
- Jordon S Hilliard
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH 43210, USA.
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, Kulik HJ, Ottaviani MF, Oldenhuis NJ, Johnson JA. Endohedrally Functionalized Metal-Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. J Am Chem Soc 2022; 144:13276-13284. [PMID: 35819842 DOI: 10.1021/jacs.2c04289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Nathan J Oldenhuis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Sharp CH, Bukowski BC, Li H, Johnson EM, Ilic S, Morris AJ, Gersappe D, Snurr RQ, Morris JR. Nanoconfinement and mass transport in metal-organic frameworks. Chem Soc Rev 2021; 50:11530-11558. [PMID: 34661217 DOI: 10.1039/d1cs00558h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Conor H Sharp
- National Research Council Associateship Program and Electronic Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hongyu Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Stefan Ilic
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Dilip Gersappe
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
8
|
Qi X, Zhong R, Chen M, Sun C, You S, Gu J, Shan G, Cui D, Wang X, Su Z. Single Metal–Organic Cage Decorated with an Ir(III) Complex for CO 2 Photoreduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangjuan Qi
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Ronglin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Mengmeng Chen
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chunyi Sun
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Siqi You
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Jianxia Gu
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guogang Shan
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Dongxu Cui
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|