1
|
Sekiguchi Y, Onnuch P, Li Y, Liu RY. Migratory Aryl Cross-Coupling. J Am Chem Soc 2025; 147:1224-1230. [PMID: 39693397 DOI: 10.1021/jacs.4c15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A fundamental property of cross-coupling reactions is regiospecificity, meaning that the site of bond formation is determined by the leaving group's location on the electrophile. Typically, achieving a different substitution pattern requires the synthesis of a new, corresponding starting-material isomer. As an alternative, we proposed the development of cross-coupling variants that would afford access to multiple structural isomers from the same coupling partners. Here, we first demonstrate that a bulky palladium catalyst can facilitate the efficient, reversible transposition of aryl halides by temporarily forming metal aryne species. Despite the nearly thermoneutral equilibrium governing this process, combining it with the gradual addition of a suitable nucleophile results in dynamic kinetic resolution of the isomeric intermediates and high yields of unconventional product isomers. The method accommodates a range of oxygen- and nitrogen-centered nucleophiles and tolerates numerous common functional groups. A Curtin-Hammett kinetic scheme is supported by computational and experimental data, providing a general mechanistic framework for extending this migratory cross-coupling concept.
Collapse
Affiliation(s)
- Yoshiya Sekiguchi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Polpum Onnuch
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Yuli Li
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Choi H, Ham WS, van Bonn P, Zhang J, Kim D, Chang S. Mechanistic Approach Toward the C4-Selective Amination of Pyridines via Nucleophilic Substitution of Hydrogen. Angew Chem Int Ed Engl 2024; 63:e202401388. [PMID: 38589725 DOI: 10.1002/anie.202401388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The development of site-selective functionalization of N-heteroarenes is highly desirable in streamlined synthesis. In this context, direct amination of pyridines stands as an important synthetic methodology, with particular emphasis on accessing 4-aminopyridines, a versatile pharmacophore in medicinal chemistry. Herein, we report a reaction manifold for the C4-selective amination of pyridines by employing nucleophilic substitution of hydrogen (SNH). Through 4-pyridyl pyridinium salt intermediates, 4-aminopyridine products are obtained in reaction with aqueous ammonia without intermediate isolation. The notable regioselectivity was achieved by the electronic tuning of the external pyridine reagents along with the maximization of polarizability in the proton elimination stage. Further mechanistic investigations provided a guiding principle for the selective C-H pyridination of additional N-heteroarenes, presenting a strategic avenue for installation of diverse functional groups.
Collapse
Affiliation(s)
- Hoonchul Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Won Seok Ham
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Pit van Bonn
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, 52074, Germany
| | - Jianbo Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| |
Collapse
|
3
|
Inoue K, Mori A, Okano K. Formal Halogen Transfer of Bromoarenes via Stepwise Reactions. Org Lett 2023; 25:6693-6698. [PMID: 37646376 DOI: 10.1021/acs.orglett.3c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A two-step halogen transfer of bromoarenes is reported. Mono-, di-, and tribromoaryllithiums generated through deprotonative lithiation were converted into organozinc species by in situ zincation, which were then subjected to bromination to provide the corresponding di-, tri-, and tetrabromoarenes, respectively, in 41-95% yields. Regioselective bromine-magnesium exchange with ethylmagnesium chloride followed by electrophilic trapping afforded benzene, pyridine, quinoline, pyrimidine, and thiazole derivatives with the bromo group translocated from the original position in 28-86% yields.
Collapse
Affiliation(s)
- Kengo Inoue
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Gu JG, Wang CX, Hu GQ, Shen K, Zhang HH. K 2CO 3/18-Crown-6-Catalyzed Selective H/D Exchange of Heteroarenes with Bromide as a Removable Directing Group. Org Lett 2023; 25:3055-3059. [PMID: 37126411 DOI: 10.1021/acs.orglett.3c00883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The K2CO3/18-crown-6-catalyzed H/D exchange of heretoarenes in high atom % deuterium incorporation is disclosed. The use of a weak base as a catalyst leads to excellent site selectivity and broad functional group tolerance. Control experiments indicated that the use of bromide, which enhances the adjacent C-H bond reactivity, as a removable directing group is essential. Moreover, conversion of bromide to other functional groups is also performed to construct other useful deuterated compounds.
Collapse
Affiliation(s)
- Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Cai-Xia Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Guang-Qi Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kang Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Kubo M, Inayama N, Ota E, Yamaguchi J. Palladium-Catalyzed Tandem Ester Dance/Decarbonylative Coupling Reactions. Org Lett 2022; 24:3855-3860. [PMID: 35604648 DOI: 10.1021/acs.orglett.2c01432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Dance reaction" on the aromatic ring is a powerful method in organic chemistry to translocate functional groups on arene scaffolds. Notably, dance reactions of halides and pseudohalides offer a unique platform for the divergent synthesis of substituted (hetero)aromatic compounds when combined with transition-metal-catalyzed coupling reactions. Herein, we report a tandem reaction of ester dance and decarbonylative coupling enabled by palladium catalysis. In this reaction, 1,2-translocation of the ester moiety on the aromatic ring is followed by decarbonylative coupling with nucleophiles to enable the installation of a variety of nucleophiles at the position adjacent to the ester in the starting material.
Collapse
Affiliation(s)
- Masayuki Kubo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Naomi Inayama
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Eisuke Ota
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
6
|
Puleo TR, Klaus DR, Bandar JS. Nucleophilic C-H Etherification of Heteroarenes Enabled by Base-Catalyzed Halogen Transfer. J Am Chem Soc 2021; 143:12480-12486. [PMID: 34347457 DOI: 10.1021/jacs.1c06481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a general protocol for the direct C-H etherification of N-heteroarenes. Potassium tert-butoxide catalyzes halogen transfer from 2-halothiophenes to N-heteroarenes to form N-heteroaryl halide intermediates that undergo tandem base-promoted alcohol substitution. Thus, the simple inclusion of inexpensive 2-halothiophenes enables regioselective oxidative coupling of alcohols with 1,3-azoles, pyridines, diazines, and polyazines under basic reaction conditions.
Collapse
Affiliation(s)
- Thomas R Puleo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Danielle R Klaus
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|